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�is note will explain - in less theoretical terms - the basics of a bivariate linear regression, including testing and
con�dence intervals. Speci�cally, we will use the Leinhardt.RData dataset as an example. Let’s treat the entire
dataset of 101 countries as the population, and then take a sample of size n = 40. �en, the sample is all that we
actually observe. Our goal is to learn something about the population from the sample we observe.

Let’s suppose we’re interested in estimating the population linear conditional expectation function E[Y ∣X = x] =
β0 + β1x, where Y is the log of infant mortality and X is the log of income per capita. Furthermore, let’s make the
typical assumptions that we make in the context of regression: random sampling, linearity of the population condi-
tional expectation function, constant variance, and normality.

Now, when we run a linear regression of log of infant mortality on the log of income per capita for our sample
in R, this is the output we obtain from the lm object:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.44624 0.41046 18.141 < 2e-16 ***

lincome -0.56600 0.06412 -8.827 9.72e-11 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5465 on 38 degrees of freedom

Multiple R-squared: 0.6722 , Adjusted R-squared: 0.6635

F-statistic: 77.91 on 1 and 38 DF, p-value: 9.719e-11

What do these outputs mean and how does R calculate them?
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Estimating Regression Coe�cients

We estimate β0 (the intercept) and β1 (the slope) of the population LCEF using the following two estimators (which
are unbiased for the population quantities)1:

β̂1 =
∑n

i=1(Xi − X̄)(Yi − Ȳ)
∑n

i=1(Xi − X̄)2

β̂0 = Ȳ − β̂1X̄

Given the sample we drew, we obtain the following estimates: β̂0 = 7.446 and β̂1 = −0.566.

�is is what our sample looks like, along with the sample conditional expectation function de�ned by the estimators
for β0 and β1 presented above.

Figure 1: Sample Linear Conditional Expectation Function
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Relationship Between Economic Development and Infant Mortality

1Note that we can alternatively express the estimator for the slope as as weighted average of the outcome variable: β̂1 = ∑n
i=1 WiYi . �is

highlights the linearity of the estimator. �e weights are given byWi = X i − X̄
∑n

j=1(X j − X̄)2
.
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Variance of Regression Coe�cients

We are likely not content just with reporting the estimated regression coe�cients. Instead, we want to be able to
give some sort of measure of how certain we are with regard to our estimates. Philosophically, under the frequentist
framework of inference, we are going to conceptualize uncertainty in terms of howmuch our estimates would change
if we were to draw a di�erent sample, or speci�cally many di�erent samples! �e distributions of the estimated re-
gression coe�cients across di�erent samples drawn from the population are called the sampling distributions of the
regression coe�cients. Note that this is a philosophical exercise, and in reality, we only ever observe one sample.
However, our notions of uncertainty and everything that stems from it (such as testing and con�dence intervals) are
rooted in thinking about sample in the context of one of many possible samples that could have been drawn from
the population.

Even though in reality, given one sample, we cannot simulate a sampling distribution for the estimated regression
coe�cients by drawing repeated samples from the population, we can still characterize the true variances of the es-
timated regression coe�cients using theory:

V[β̂1] =
σ2
є

∑n
i=1(Xi − X̄)2

V[β̂0] =
σ2
є ∑n

i=1 Xi

n∑n
i=1(Xi − X̄)2

Note the two quantities that make up the expression for variance for β̂1. �e σ2
є is the the variance of the true,

population errors around the population linear conditional expectation function. ∑n
i=1(Xi − X̄)2 gives the squared

deviation of the explanatory variable from its mean for a sample. While this quantity is actually de�ned on the sam-
ple - not the population - it changes across samples that we can possibly draw. As a result, these are random variables!
Since we expressed the variances of the estimated regression coe�cients above in the unconditional form (not con-
ditioning on a particular sample that we obtained), we actually do not know∑n

i=1(Xi − X̄)2, just like we do not know
σ2
є .2 Note also that∑n

i=1(Xi−X̄)2 is closely related to the sample variance of X. Speci�cally∑n
i=1(Xi−X̄)2 = (n−1)S2X .

�e square root of the variances is the standard error of the estimated regression coe�cients, which we can write
respectively as SE(β̂0) and SE(β̂1) for the two coe�cients.

�eoretical Distributions of Estimated Regression Coe�cients

We have already mentioned that β̂1 and β̂0 are unbiased for their population counterparts. Moreover, we have ex-
pressed the variance of these estimators above. What is the distribution of these estimators? It turns out that both
estimators are normally distributed given that we made the assumption that the outcome variable is normally dis-
tributed. Note that even if we didn’t make this assumption, the estimators would tend towards a normal distribution
asymptotically because of the Central Limit�eorem.3

2�e di�erence between unconditional variances of the regression coe�cients and variances conditional upon the sample we obtain
are theoretically di�erent quantities. While interesting, this �ne point is rather advanced and beyond the scope of a basic introduction to
regression.

3Loosely speaking, this follows from the fact that the estimators for β1 and β0 can be expressed as sequence of independent and identically
distributed random variables.
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As a result, we can express the theoretical distributions of the estimated regression coe�cients as:

β̂1 ∼ N (β1,
σ2
є

∑n
i=1(Xi − X̄)2

)

β̂0 ∼ N (β0,
σ2
є ∑n

i=1 X
2
i

n ⋅∑n
i=1(Xi − X̄)2

)

Estimated Variances

Just given our sample, we do not know σ2
є , nor do we know (Xi − X̄)2 - a quantity de�ned for a general sample, not

the speci�c one we drew.

However, we can estimate the variances of the estimated regression coe�cients by estimating σ2
є with σ̂2

є and us-
ing the X’s from our sample as follows:

V̂[β̂1] =
σ̂2
є

∑n
i=1(Xi − X̄)2

V̂[β̂0] =
σ̂2
є ∑n

i=1 Xi

n∑n
i=1(Xi − X̄)2

σ̂2
є is an unbiased estimator of σ2

є and is calculated as the sum of squared residuals from the regression on the sample
we obtained, divided by n − 2, the degrees of freedom in the regression:

σ̂2
є =
∑n

i=1 є̂
2
i

n − 2
= SSR

n − 2
,

where є̂i is the observed residual on the ith observation in the sample.

�e square root of σ̂2
є is simply called the standard error of the regression (SER).�e square roots of the estimated

variances for the estimated regression coe�cients are the estimated standard errors for the estimated regression coef-
�cients. �is is the quantity that R reports and is an estimate of the variability in the estimated regression coe�cients
that captures how much they would change across di�erent samples.

Note that for our regression example:
n − 2 = 38 (degrees of freedom)
σ̂2
є = 0.5465 (residual standard error)
ŜE(β̂0) = 0.4105
ŜE(β̂1) = 0.06412
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Testing

We are now going to turn to hypothesis testing, where we essentially want to see how much bearing our data has
on making a decision between two hypotheses. Let’s focus on hypotheses regarding β1, the slope of the population
LCEF. Let’s set up a general hypothesis in the form:

H0 ∶ β1 = c

H1 ∶ β1 ≠ c

What are we saying in words? �e null hypothesis - H0 - is postulating that the true population slope is equal
to c. �e alternative hypothesis - H1 - postulates that β1 is not equal to c. Our goal is to see whether or not the data
we have allows us to reject the null hypothesis (and accept the alternative), or whether we cannot reject the null. To
do so, we construct a test statistic as follows:

T = β̂1 − c
SE(β̂1)

�e test statistic is a random variable since it’s just a function of random variables. We can therefore ask how it’s
distributed assuming the null hypothesis is true. �at is, assuming that β1 is c, what would the distribution of the test
statistic be? We know, from before, that in this case E[β̂1] = c and β̂1 ∼ N (β1, V(β̂1)). �e test statistic therefore
represents a standardization of the normal distribution. By subtracting o� the mean of β̂1 and dividing by its stan-
dard deviation, we know that the resultant distribution will be a standard normal.

�erefore:

T = β̂1 − c
SE(β̂1)

∼ N (0, 1)

However, note that we have to estimate SE(β̂1) using ŜE(β̂1). �is estimation uses up 2 degrees of freedom, leaving
us with n − 2 degrees of freedom. To appropriately capture the lower certainty that we have due to this estimation,
the test statistic is distributed as a t-distribution with n − 2 degrees of freedom:

T = β̂1 − c
ŜE(β̂1)

∼ tn−2

We call the distribution of the test statistic under the null the null distribution.

Now, we can calculate the observed test statistic - Tobs for our sample by actually plugging in the values for β̂1 and
ŜE(β̂1) that we obtained from the formulas above. �e goal is then to compare Tobs to the sampling distribution of
the test statistic under the null. Intuitively, we want to know if our observed test statistic is a likely value given the
distribution of the test statistic under the null. If it’s a highly unlikely value, it gives us reason to believe that the null
is not likely to be true, and therefore we reject it. Of course, what we speci�cally mean by “highly unlikely” is gov-
erned by our tolerance for Type I error - the probability of rejecting the null hypothesis when it is in fact true (o�en
denoted as α). Once we select an α, we can obtain critical values for the null distribution that serve as thresholds for
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rejecting or failing to reject the null (and appropriately capture the amount of Type I error we’re comfortable with).
If the observed test statistic falls outside the critical values, we say that we can reject the null with a signi�cance level
of α. If the observed test statistic falls within these thresholds, we say that we fail to reject the null at a signi�cance
level of α. Just to reiterate, we observe only one value of the test statistic and we compare it against a hypothesized
distribution - the null distribution - that we would expect if the null was true.

In R and Stata, the default hypothesis test for the regression coe�cients is testing whether the true regression coef-
�cient is equal to zero. So, for β1:

H0 ∶ β1 = 0
H1 ∶ β1 ≠ 0

�e observed test statistic we obtain in our example is:

Tobs =
−0.5660 − 0
0.06412

= −8.827

Now, suppose that we take the common signi�cance level of α = 0.05. We can calculate the critical values for the null
distribution - which is a t distribution with n − 2 degrees of freedom - using the inverse CDF of the t-distribution
such that there is α/2 mass in each of the tails of the t-distribution (since this is a two-sided hypothesis test).

�e critical values are thus: tα/2 = 2.0243 and −tα/2 = −2.0243.

Since Tobs falls outside the thresholds established by the critical values (it falls into the rejection region), we can
reject the null hypothesis at a signi�cance level of α = 0.05. Note that we can see this graphically in Figure 2.

An alternative way to present the results of a hypothesis test is through a p-value. A p-value is de�ned as the proba-
bility of obtaining a test statistic at least as extreme that as the one that we observed for our sample assuming the null
is true. Since the form of our hypothesis is that of a two-sided test, the corresponding p-value will need to convey
notions of extremeness in both directions (both greater than ∣Tobs ∣ and less than −∣Tobs ∣). More formally, a p-value is:

p = P(∣T ∣ ≥ ∣Tobs ∣) = 2 ⋅ P(T ≥ ∣Tobs ∣)

In our example:
p = P(∣T ∣ ≥ 8.827) = P(T ≥ 8.827) + P(T ≤ −8.827)

By symmetry of the t-distribution:
p = 2 ⋅ P(T ≤ −8.827) = 9.72e − 11

Since our p-value is less than α = 0.001, we can state that we can reject the null hypothesis at a signi�cance level of
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Figure 2: Depiction ofHypothesis Test forH0 ∶ β1 = 0 versusH1 ∶ β1 ≠ 0. Test statistic is distributed as a t-distribution
with n − 2 = 38 degrees of freedom. Signi�cance level is α = 0.05. Since this is a two-sided test, critical values are
calculated so that there is α/2 = 0.025 density in each of the tails (shaded in blue). Values outside of the critical
values (corresponding to the tails shaded in blue) de�ne the rejection region. �e observed test statistic - Tobs - is
also plotted. Since it falls in the rejection region, we reject the null hypothesis at the 0.05 signi�cance level.
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Testing Non-Default Hypotheses

Note that even though the default hypothesis test in R or Stata is that the population parameter is equal to 0, there
is no reason we can’t do a hypothesis test where c is another value. For example:

H0 ∶ β1 = −0.50
H1 ∶ β1 ≠ −0.50

�e observed test statistic we obtain in this example is:
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Tobs =
−0.5660 − (−0.50)

0.06412
= −1.03

�e observed test statistic does not fall within the rejection region of the test, and thus we fail to reject the null
hypothesis at the α = 0.05 signi�cance level (note that we cannot say that we accept the null). �is is presented
graphically in Figure 3.

Figure 3: Depiction of Hypothesis Test for H0 ∶ β1 = −0.50 versus H1 ∶ β1 ≠ −0.50. Test statistic is distributed as a
t-distribution with n− 2 = 38 degrees of freedom. Signi�cance level is α = 0.05. Since this is a two-sided test, critical
values are calculated so that there is α/2 = 0.025 density in each of the tails (shaded in blue). Values outside of the
critical values (corresponding to the tails shaded in blue) de�ne the rejection region. �e observed test statistic -
Tobs - is also plotted. Since it does not fall in the rejection region, we cannot reject the null hypothesis at the 0.05
signi�cance level.
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Finally, we can also present a p-value for this hypothesis test (intuition behind the p-value is presented graphically
in Figure 4):
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p = 2 ⋅ P(T ≤ −1.03) = 0.31

Since the p-value is greater than α = 0.05, this con�rms that we cannot reject the null at that signi�cance level.

Figure 4: Depiction of p-value for H0 ∶ β1 = −0.50 versus H1 ∶ β1 ≠ −0.50. Test statistic is distributed as a t-
distribution with n − 2 = 38 degrees of freedom. �e observed test statistic - Tobs - is plotted in red. P-value is the
area shaded in red that represents the probability of obtaining a value of the test statistic at least as extreme as the
one we actually observed.
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Con�dence Intervals

We o�en want to report the uncertainty around our estimates of the regression coe�cients using con�dence inter-
vals. Recall the interpretation of the 1 − α level con�dence interval for a parameter: it is constructed such that in
100 ⋅ (1 − α) percent of samples you draw from the population, the con�dence interval will contain the true value
of the population parameter. However, a given con�dence interval either contains the true population parameter or
does not. Moreover, given that we only observe one sample, we don’t know whether the con�dence interval we con-
struct from that sample for a parameter will contain the true value of the parameter - we know we have an 100 ⋅ α%
chance that it may not. �is of course, is one of several ways in which con�dence intervals are connected to hypoth-
esis testing. α, in the hypothesis testing perspective, captures our tolerance for Type 1 error.

Supposewewant to construct a 100⋅(1−α)%con�dence interval for β1. Startingwith the fact that T = β̂1 − β1

ŜE(β̂1)
∼ tn−2,

we can de�ne critical values ±t1−α/2 such that the following relationship is satis�ed:

P( − t1−α/2 ≤ T ≤ t1−α/2) = 1 − α

P( − t1−α/2 ≤
β̂1 − β1

ŜE(β̂1)
≤ t1−α/2) = 1 − α

Multiplying through by ŜE(β̂1), subtracting o� β̂1, and then reversing the inequality:

P(β̂1 − t1−α/2 ⋅ ŜE(β̂1) ≤ β1 ≤ β̂1 + t1−α/2 ⋅ ŜE(β̂1)) = 1 − α

Note that ±t1−α/2 are then the critical values such that FT(t1−α/2) = 1 − α/2, where FT is the CDF of the null distri-
bution (t-distribution with n − 2 degrees of freedom).

We can more concisely express the 100 ⋅ (1 − α)% con�dence interval for β1 as:

β̂1 ± t1−α/2 ⋅ ŜE(β̂1)

For our example, supposing we want the commonly reported 95% con�dence interval for β1 which means that
t1−α/2 = 1.96:
−0.566 ± 1.96 ⋅ (0.06412) = [−0.692,−0.440]

Note the link between con�dence intervals and hypothesis testing. �e area contained of the 100 ⋅ (1 − α)% con�-
dence interval actually provides the set of values C such that the null hypothesis H0 ∶ β1 = c cannot be rejected at the
signi�cance level of α for any c ∈ C.
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