GOV 2000 Section 10: Inference with Randomized Experiments

Konstantin Kashin Harvard University

November 7, 2012

OUTLINE

Administrative Details

Defining the Estimand

ESTIMATING THE ESTIMAND

Dealing with Conditional Randomization

Administrative Details

- Problem Set 7 returned; solutions will be posted this evening
- Problem Set 9 due next Tuesday

OUTLINE

Administrative Details

Defining the Estimand

ESTIMATING THE ESTIMAND

Dealing with Conditional Randomization

An example of a conditionally randomized experiment

- We want to study how information on unemployment insurance programs affects the likelihood of applying for benefits
- We can do so through a survey conditionally randomized experiment
- **Treatment:** receive information on unemployment insurance program (how it works) tailored to your state
 - T = 1 if receive information, T = 0 if do not receive information
- **Outcome:** likelihood of applying for benefits (measured from 1 to 5)
 - $Y \in \{1, 2, 3, 4, 5\}$, where 5 indicates very likely to apply
- Randomization is done *conditional* upon current employment status
 - X = 1 if employed, X = 0 if unemployed

POTENTIAL OUTCOMES TABLE

i	Name	X_i	$Y_i(1)$	$Y_i(o)$
1	Benjamin Franklin	1	3	2
2	Thomas Jefferson	1	3	3
3	George Washington	1	5	2
4	Alexander Hamilton	1	1	2
5	James Madison	1	2	1
6	John Jay	1	4	3
7	Roger Sherman	0	3	4
8	Charles Pinckney	0	4	5
9	John Hancock	0	4	3
10	Robert Morris	0	1	3

Assumptions of Causal Inference

What assumptions have we already made just by writing down the potential outcome table like this?

- SUTVA in Rubin framework: no interference between units
- Implicit in Hernan and Robins framework

Defining the Estimand

What are some potential causal quantities of interest we may be interested in?

- Average treatment effect: $E[Y_i(1) Y_i(0)]$
- Stratum-specific average treatment effect: $E[Y_i(1) Y_i(0)|X_i = x]$
- Generally, anything at all that can be written in terms of the potential outcomes in our table!

POTENTIAL OUTCOMES TABLE

i	Name	X _i	$Y_i(1)$	$Y_i(o)$	T_i
1	Benjamin Franklin	1	3	2	1
2	Thomas Jefferson	1	3	3	0
3	George Washington	1	5	2	1
4	Alexander Hamilton	1	1	2	0
5	James Madison	1	2	1	1
6	John Jay	1	4	3	0
7	Roger Sherman	0	3	4	1
8	Charles Pinckney	0	4	5	1
9	John Hancock	0	4	3	0
10	Robert Morris	0	1	3	1

POTENTIAL OUTCOMES TABLE

i	Name	X _i	$Y_i(1)$	$Y_i(o)$	T_i	Y_i^{obs}
1	Benjamin Franklin	1	3	2	1	3
2	Thomas Jefferson	1	3	3	0	3
3	George Washington	1	5	2	1	5
4	Alexander Hamilton	1	1	2	0	2
5	James Madison	1	2	1	1	2
6	John Jay	1	4	3	0	3
7	Roger Sherman	0	3	4	1	3
8	Charles Pinckney	0	4	5	1	4
9	John Hancock	0	4	3	0	3
10	Robert Morris	0	1	3	1	1

Assumptions of Causal Inference

What is the assumption that enabled us to write fill out Y_i^{obs} in terms of the corresponding potential outcomes?

•
$$Y_i^{obs} = T_i \cdot Y_i(1) + (1 - T_1) \cdot Y_i(0)$$

- Consistency in the Hernan and Robins framework
- Part of SUTVA in the Rubin framework

Outline

Administrative Details

Defining the Estimand

Estimating the Estimand

Dealing with Conditional Randomization

POTENTIAL OUTCOMES TABLE

Here is what we actually observe:

i	Name	X	Y(1)	Y(o)	T	Y ^{obs}
1	Benjamin Franklin	1	3	?	1	3
2	Thomas Jefferson	1	?	3	0	3
3	George Washington	1	5	?	1	5
4	Alexander Hamilton	1	?	2	0	2
5	James Madison	1	2	?	1	2
6	John Jay	1	?	3	0	3
7	Roger Sherman	0	3	?	1	3
8	Charles Pinckney	0	4	?	1	4
9	John Hancock	0	?	3	0	3
10	Robert Morris	0	1	?	1	1

ESTIMATING THE ESTIMAND

Given what we observe, how do we estimate the estimand?

Given what we observe, how do we estimate the ATE, defined as $E[Y_i(1) - Y_i(0)]$?

What condition must hold to estimate the ATE using a simple difference-in-means between the treated and control units?

- Exchangeability in the Hernan and Robins framework: $Y(0), Y(1), X \perp T$
- **Unconfoundedness** in the Rubin framework: P(T|Y(o), Y(1), X) = P(T)

This is satisfied when an experiment is marginally randomized.

We find that $\bar{Y}|(T = 1) = 3$ and $\bar{Y}|(T = 0) = 2.75$.

Therefore, $\widehat{ATE} = \bar{Y}|T = 1 - \bar{Y}|T = 0 = 3 - 2.75 = 0.25$.

Estimating the ATE

Estimating the ATE using a simple difference-in-means is equivalent to imputing the missing potential outcomes as:

i	Name	X	Y(1)	Y(o)	Т	Y ^{obs}
1	Benjamin Franklin	1	3	2.75	1	3
2	Thomas Jefferson	1	3	3	0	3
3	George Washington	1	5	2.75	1	5
4	Alexander Hamilton	1	3	2	0	2
5	James Madison	1	2	2.75	1	2
6	John Jay	1	3	3	0	3
7	Roger Sherman	0	3	2.75	1	3
8	Charles Pinckney	0	4	2.75	1	4
9	John Hancock	0	3	3	0	3
10	Robert Morris	0	1	2.75	1	1

LINK TO BIVARIATE REGRESSION

The estimate of the ATE is equivalent to regression coefficient from regressing the outcome on the binary treatment indicator:

$$E[Y_{i}(1) - Y_{i}(0)] = E[Y_{i}(1)] - E[Y_{i}(0)]$$

= $E[Y_{i}(1)|T_{i} = 1] - E[Y_{i}(0)|T_{i} = 0]$
= $E[Y_{i}|T_{i} = 1] - E[Y_{i}|T_{i} = 0]$
= β

VIOLATION OF ASSUMPTIONS

Note that if exchangeability or unconfoundedness fail to hold as we defined them above, the simple difference-in-means estimate is no longer unbiased because:

 $E[Y_i(1)] - E[Y_i(0)] \neq E[Y_i(1)|T_i = 1] - E[Y_i(0)|T_i = 0]$

Intuitively, it is wrong because we are comparing apples and oranges. We are imputing missing potential outcomes for apples using oranges, and vice versa.

Estimating the ATE

Estimating the ATE using a simple difference-in-means is equivalent to imputing the missing potential outcomes as:

i	Name	X	Y(1)	Y(o)	Т	Y ^{obs}
1	Benjamin Franklin	1	3	2.75	1	3
2	Thomas Jefferson	1	3	3	0	3
3	George Washington	1	5	2.75	1	5
4	Alexander Hamilton	1	3	2	0	2
5	James Madison	1	2	2.75	1	2
6	John Jay	1	3	3	0	3
7	Roger Sherman	0	3	2.75	1	3
8	Charles Pinckney	0	4	2.75	1	4
9	John Hancock	0	3	3	0	3
10	Robert Morris	0	1	2.75	1	1

VIOLATION OF THIS IN OUR EXAMPLE

- We cannot analyze a conditionally randomized experiment as a marginally randomized experiment
- $P(T|X=1) \neq P(T|X=0)$ $(\frac{1}{2} \neq \frac{3}{4}$ in our example)
- Violation of exchangeability in the Hernan and Robins framework: Y(o), Y(1), X are not independent from T
- Violation of unconfoundedness in Rubin framework: $P(T|Y(o), Y(1), X) \neq P(T)$ (instead it reduced to P(T|X))

Outline

Administrative Details

Defining the Estimand

ESTIMATING THE ESTIMAND

DEALING WITH CONDITIONAL RANDOMIZATION

Assumptions

In a conditionally randomized experiment, where treatment was randomized within levels of *X*, we write conditional versions of the assumptions above:

- **Conditional exchangeability** in the Hernan and Robins framework: $Y(o), Y(1) \perp T | X$
- ► In the Rubin framework, assignment mechanism (for who gets treatment) is no longer **unconfoundedness** but it is **known**: P(T|Y(o), Y(1), X) = P(T|X)

Assumptions

Conditional exchangeability implies that *within* strata defined by levels of *X*, we have exchangeability and can calculate ATEs using observed difference-in-means:

$$E[Y_i(1) - Y_i(0)|X_i = x] = E[Y_i(1)|X_i] - E[Y_i(0)|X_i = x]$$

= $E[Y_i(1)|T_i = 1, X_i = x] - E[Y_i(0)|T_i = 0, X_i = x]$
= $E[Y_i|T_i = 1, X_i = x] - E[Y_i|T_i = 0, X_i = x]$

 $\bar{Y}|(T = 1, X = x) - \bar{Y}|(T = 0, X = x)$ is an unbiased estimate for E[$Y_i|T_i = 1, X_i = x$] - E[$Y_i|T_i = 0, X_i = x$].

ESTIMATING STRATUM-SPECIFIC ATES

Estimating the stratum-specific ATE using conditional difference-in-means is equivalent to imputing the missing potential outcomes as:

i	Name	X	Y(1)	Y(o)	Т	Y ^{obs}
1	Benjamin Franklin	1	3	<u>8</u> 3	1	3
2	Thomas Jefferson	1	$\frac{10}{3}$	3	0	3
3	George Washington	1	5	$\frac{8}{3}$	1	5
4	Alexander Hamilton	1	$\frac{10}{3}$	2	0	2
5	James Madison	1	2	$\frac{8}{3}$	1	2
6	John Jay	1	<u>10</u> 3	3	0	3
7	Roger Sherman	0	3	3	1	3
8	Charles Pinckney	0	4	3	1	4
9	John Hancock	0	$\frac{8}{3}$	3	0	3
10	Robert Morris	0	1	3	1	1

ESTIMATING STRATUM-SPECIFIC ATES

For the stratum defined by X = 1: $\widehat{ATE}_{X=1} = \hat{\tau}_1 = \bar{Y} | (T = 1, X = 1) - \bar{Y} | (T = 0, X = 1) = \frac{10}{3} - \frac{8}{3} = \frac{2}{3}$

For the stratum defined by X = o: $\widehat{ATE}_{X=o} = \hat{\tau}_o = \overline{Y} | (T = 1, X = o) - \overline{Y} | (T = o, X = o) = \frac{8}{3} - 3 = -\frac{1}{3}$

But wait! We said we were interested in the ATE...

So can we combine stratum-specific ATEs to get one overall ATE?

Yes!

There are several ways to calculate an overall ATE in a conditionally randomized experiment that capture the idea of combining strata-specific ATEs:

- Weight strata-specific ATEs by size of strata:
 - Standardization
 - IP weighting
 - Interactive regression
- Weight strata-specific ATEs by size of strata and within-strata variance of treatment indicator:
 - Additive regression

STANDARDIZATION

The formula for standardization is:

$$\widehat{ATE} = \sum_{x} [\bar{Y} | (T = 1, X = x) \cdot Pr(X = x)] - \sum_{w} [\bar{Y} | (T = 0, X = x) \cdot Pr(X = x)]$$

With 2 strata, this simplifies to:

$$\widehat{ATE} = \tau_1 \cdot P(X = 1) + \tau_0 \cdot P(X = 0)$$

For our example:

$$\widehat{ATE} = \frac{2}{3} \cdot \frac{3}{5} + \frac{-1}{3} \cdot \frac{2}{5} = \frac{4}{15}$$

STANDARDIZATION

Note that the answer given by standardization is identical to that provided if we just take the difference-in-means in *imputed* potential outcomes:

i	Name	X	Y(1)	Y(o)	T	Y ^{obs}
1	Benjamin Franklin	1	3	<u>8</u> 3	1	3
2	Thomas Jefferson	1	$\frac{10}{3}$	3	0	3
3	George Washington	1	5	$\frac{8}{3}$	1	5
4	Alexander Hamilton	1	$\frac{10}{3}$	2	0	2
5	James Madison	1	2	$\frac{8}{3}$	1	2
6	John Jay	1	$\frac{10}{3}$	3	0	3
7	Roger Sherman	0	3	3	1	3
8	Charles Pinckney	0	4	3	1	4
9	John Hancock	о	<u>8</u> 3	3	0	3
10	Robert Morris	0	1	3	1	1
			3.67	2.80		

STANDARDIZATION AND INTERACTIVE REGRESSION

It turns out that an interactive regression model will give you the same results as standardization:

$$\mathbb{E}[Y|T = t, X = x] = \beta_0 + \beta_1 \cdot t + \beta_2 \cdot x + \beta_3 \cdot t \cdot x$$

We can interpret $\beta_1 + \beta_3 \cdot x$ as a conditional difference-in-means between treated and control groups:

$$E[Y|T = 1, X = x] - E[Y|T = 0, X = x]$$

Note that for X = x, we get out stratum-specific ATEs:

- $X = o \Rightarrow \tau_o = \beta_1$
- $X = 1 \Rightarrow \tau_1 = \beta_1 + \beta_3$

STANDARDIZATION AND INTERACTIVE REGRESSION

To get the overall ATE, we can use the law of total expectation to obtain that:

$$\mathbf{E}[Y_i(1) - Y_i(0)] = \beta_1 + \beta_3 \cdot \mathbf{E}_X[X]$$

Therefore:

$$\widehat{ATE} = \hat{\beta}_1 + \hat{\beta}_3 \cdot \bar{X}$$

In practice:

- Recenter X by subtracting off \bar{X} (de-meaning)
- ▶ Re-run interactive regression above using demeaned *X*
- \widehat{ATE} will now be $\hat{\beta}_1$

CONCLUSION

ANY QUESTIONS?