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Problem Set Expectations

▸ �ird problem set distributed yesterday.
▸ Corrections for �rst problem set due next Tuesday.
▸ Must be typeset using LATEX or Word and submitted as one
document containing graphics and explanation electronically in
pdf form

▸ Must be accompanied by source-able, commented code
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Midterm Exam

▸ Window of exam: Tuesday, October 9th (a�er class) - Sunday,
October 14th at 11.59pm

▸ Needs to be completed in 5 hours
▸ Open note / book, but no collaboration allowed
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Sampling from Common Probability Distributions

How do we sample from the normal distribution with µ = 0 and σ = 2
in R?

set.seed (12345)

rnorm(10, mean=0, sd=2)

How do we sample from the uniform distribution on the interval
[0, 10] in R?

set.seed (12345)

runif(10, min=0, max =10)
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What is the probability that a random variable lies
in a particular subdomain?

X is the wait time (in minutes) for the red line in the morning. Let
X ∼ Expo(0.1). What is the probability that X ∈ [1, 5], that one has to
wait less than 5 minutes but more than a minute?
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Analytic Approach: CDFs

P(1 ≤ X ≤ 5) = P(X ≤ 5) − P(X ≤ 1) = FX(5) − FX(1)

In R:

pexp(q=5, rate =0.1) -pexp(q=1, rate =0.1)

∴P(1 ≤ X ≤ 5) ≈ 0.298
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Simulation Approach

1. Sample from distribution of interest to approximate it
2. Calculate proportion of observations in sample that fall in

subdomain of interest

In R:

set.seed (12345)

exp.vec <- rexp(n=10000 , rate =0.1)

mean(1 <= exp.vec & exp.vec <= 5)

∴P(1 ≤ X ≤ 5) ≈ 0.3016
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Our Data

We are going to work with precincts dataset from fulton.RData.

▸ Election data at precinct level for Fulton County, Georgia.
▸ Population: 268 precincts
▸ Variables: turnout rate, % black, % female, mean age, turnout in
Dem. primary, turnout in Rep. primary, dummy variable for
whether precinct is in Atlanta, and location dummies for polling
stations

Let’s de�ne X = % black
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Visualizing the Population

What does the population of X = % black look like?
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Calculate True (Population) Mean

mean(precincts$black)

µ = 0.506
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Sampling of Precincts

Suppose we can only sample (SRS without replacement) n = 40
precincts. How do we do this in R?

First, note that we can subset the dataset as:

precincts[c(10 ,3 ,200) ,]

To sample n = 40 rows / precincts then:

set.seed (12345)

n.sample <- 40

N <- nrow(precincts)

rand.rows <- sample(N, size=n.sample , replace=FALSE)

mypoll <- precincts[rand.rows ,]
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Visualizing the Sample

What does the sample of X = % black look like?
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Calculate SampleMean (X̄)

mean(mypoll$black)

X̄ = 0.412
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Connecting this to Resampling

We can think of our sample as one of many possible samples we can
draw from our population:

Samples from Pop.
1 2 3 ⋯ 10000

X1 0.496 x1,2 x1,3 ⋯ x1,10000
X2 0.320 x2,2 x2,3 ⋯ x2,10000
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
X40 0.172 x40,2 x40,3 ⋯ x40,10000
X̄40 0.412 x̄2 x̄3 ⋯ x̄10000
S̄2 0.160 s22 s23 ⋯ s210000
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Connecting this to Resampling

We can think of our sample as one of many possible samples we can
draw from our population:

Samples from Pop.
1 2 3 ⋯ 10000

X1 0.496 x1,2 x1,3 ⋯ x1,10000
X2 0.320 x2,2 x2,3 ⋯ x2,10000
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
X40 0.172 x40,2 x40,3 ⋯ x40,10000

µ̂ = X̄40 0.412 x̄2 x̄3 ⋯ x̄10000
σ̂2 = S̄2 0.160 s22 s23 ⋯ s210000
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Sampling Distribution of X̄

�e sampling distribution of X̄ is the distribution of the following
vector:

Samples from Pop.
1 2 3 ⋯ 10000

X1 0.496 x1,2 x1,3 ⋯ x1,10000
X2 0.320 x2,2 x2,3 ⋯ x2,10000
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
X40 0.172 x40,2 x40,3 ⋯ x40,10000

µ̂ = X̄40 0.412 x̄2 x̄3 ⋯ x̄10000
σ̂2 = S̄2 0.160 s22 s23 ⋯ s210000
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Calculating Sampling Distribution with Known
Population

1. Start with complete population.
2. De�ne a quantity of interest (the parameter). For us, it’s µ.
3. Choose a plausible estimator. For us, it’s µ̂ = X̄.
4. Draw a sample from the population and calculate the estimate

using the estimator.
5. Repeat step 4 many times (we will do 10,000).
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Calculating Sampling Distribution with Known
Population

We already saw how to take one sample in R, but let’s now repeat it
10,000 times and store X̄ for each sample:

set.seed (12345)

n.sample <- 40

N <- nrow(precincts)

xbar.vec <- replicate(n=10000 , mean(precincts[sample(N

, size=n.sample , replace=FALSE) ,]$black))

plot(density(xbar.vec), col = "navy", lwd=2,

main = "Sampling Distribution of Sample Mean",

xlab="Sample Mean")
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Visualizing Sampling Distributions

Here is the sampling distribution for X̄:
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Visualizing Sampling Distributions

Here is the sampling distribution for X̄:
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Characterizing Sampling Distribution of Sample
Mean

We know that in large sample (large enough for Central Limit
�eorem to kick in), the sample mean will be distributed as:

X̄ ∼ N (µ, σ2/n)
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Sampling Distributions for Other Statistics

We can calculate in�nitely many statistics from a sample. If we have
the population, we can simulate a sampling distribution for those! For
example, we can look at the sampling distribution of S - the sample
standard deviation:

set.seed (12345)

n.sample <- 40

N <- nrow(precincts)

sample.fxn <- function (){

poll.i <- precincts[sample(N

, size=n.sample , replace=FALSE) ,]$black
return(c(mean(poll.i), sd(poll.i)))

}

out.df <- replicate(n=10000 , sample.fxn())

head(out.df)
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Visualizing Sampling Distributions

Here is the sampling distribution for S:
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Sampling Distribution of X̄ with Unknown
Population

In reality, we only draw one sample and cannot directly observe the
sampling distribution of X̄:

Samples from Pop.
1 2 3 ⋯ 10000

X1 0.496 ? ? ⋯ ?
X2 0.320 ? ? ⋯ ?
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
X40 0.172 ? ? ⋯ ?

µ̂ = X̄40 0.412 ? ? ⋯ ?
σ̂2 = S̄2 0.160 ? ? ⋯ ?
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How do we estimate sampling distribution?
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Characterizing Sampling Distribution of Sample
Mean

We know that in large sample (large enough for Central Limit
�eorem to kick in), the sample mean will be distributed as:

X̄ ∼ N (µ, σ2/n)
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Estimating the Sampling Distribution of Sample
Mean

We can estimate the equation in the previous slide using estimators for
the population mean µ and the population variance σ2. We will use
the following estimators:

▸ µ̂ = X̄ = 1
n ∑

n
i=1 Xi

▸ σ̂2 = S2X = 1
n−1 ∑

n
i=1(Xi − X̄)2

�e estimated sampling distribution is thus:

X̄ ∼ N (X̄, S2X/n)
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Bootstrapping the Sampling Distribution of Sample
Mean

1. Start with sample.
2. De�ne a quantity of interest (the parameter). For us, it’s µ.
3. Choose a plausible estimator. For us, it’s µ̂ = X̄.
4. Take a resample of size n (with replacement) from the sample and

calculate the estimate using the estimator.
5. Repeat step 4 many times (we will do 10,000).
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Bootstrapping the Sampling Distribution of Sample
Mean

Recall at the beginning of lecture, we already took a sample of size
n = 40 from the population and stored the resultant dataframe as the
object mypoll.

set.seed (12345)

n.sample <- 40

xbar.vec.bs <- replicate(n=10000 , mean(sample(mypoll$
black

, size=n.sample , replace=TRUE)))

plot(density(xbar.vec.bs), col = "navy", lwd=2,

main = "Bootstrapped Sampling Distribution of Sample

Mean",

xlab="Sample Mean")
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Visualizing the Bootstrapped Sampling Distribution

Here is the bootstrapped sampling distribution:
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Visualizing the Bootstrapped Sampling Distribution

However, any given sample may be far away from the truth!
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Visualizing the Bootstrapped Sampling Distribution

However, any given sample may be far away from the truth!
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Conclusion

ANY QUESTIONS?
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