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Administrative Details

▸ Midterm returned
▸ Problem Set 5 returned; corrections due next Tuesday
▸ Problem Set 7 due next Tuesday
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What have we covered?

▸ Summarizing and describing data: both univariate and
multivariate populations

▸ Sampling as source of randomness and uncertainty
▸ Probability / random variables
▸ Sample statistics and sampling distributions

▸ Revisit regression in context of sampling
▸ Standard errors, hypothesis testing, and con�dence intervals for
estimated regression coe�cients

▸ But wait! �ere are many assumptions that go into regression...
▸ And there’s missing data...
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Where are we going?

Causal inference is a missing data problem!
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What are key regression assumptions?

▸ Random sampling
▸ Constant variance (homoskedasticity)
▸ Normality
▸ Linear conditional expectation function
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Credit Card Expenditures Data

We will be working with ccarddata.csv.

▸ Outcome variable: credit card expenditure
▸ Covariates:

▸ Age
▸ Household income (monthly in thousands of dollars)
▸ Dummy for home ownership
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OLS

lm.cc <- lm(ccexpend ~ income + homeowner + age , data=

cc)
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OLS

Estimate Std. Error t value Pr(>∣t∣)
(Intercept) 0.3972 163.9851 0.00 0.9981

income 79.8358 23.6724 3.37 0.0012
homeowner 32.0877 84.7241 0.38 0.7061

age -0.7769 5.5128 -0.14 0.8883
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Violations of Constant Variance Assumption

Why is heteroskedasticity an issue?

▸ Estimated variances / standard errors are biased
▸ OLS is no longer e�cient (BLUE)
▸ Hypothesis testing and con�dence intervals are o�

Good news: problem is usually not that bad (depends on severity of
heteroskedasticity) and point estimates of regression coe�cients still
unbiased!
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Diagnosing Heteroskedasticity

We can use a scale-location plot to diagnose heteroskedasticity:
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Diagnosing Heteroskedasticity

In R, we can construct a scale-location plot as follows:

plot(lm.cc, 3)

Or manually as:

scatter.smooth(fitted(lm.cc), sqrt(abs(rstudent(lm.cc)

)), col="red")
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Fixing Heteroskedasticity

▸ Treat it as a nuisance: use heteroskedasticity-consistent standard
errors (i.e. Huber-White)

▸ Model it: use Weighted Least Squares (WLS)
▸ Treat it as model diagnostic tool: change entire model



Administrative Details Stocktake Regression Assumptions Missing Data

Homoskedastic Variance-Covariance Matrix

How can we characterize the variance of the error terms under
homoskedasticity?

V[є] = Σ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

σ2 0 0 ⋯ 0
0 σ2 0 ⋯ 0
0 0 σ2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ σ2

⎞
⎟⎟⎟⎟⎟⎟
⎠

We then estimate σ2 with σ̂2 = ∑
n
i=1 є̂

2

n − k − 1
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Heteroskedastic Variance-Covariance Matrix

How can we characterize the variance of the error terms under
heteroskedasticity?

V[є] = Σ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

σ2
1 0 0 ⋯ 0
0 σ2

2 0 ⋯ 0
0 0 σ2

3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ σ2

n

⎞
⎟⎟⎟⎟⎟⎟
⎠

How do we estimate the σs?
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Huber-White Variance-Covariance Matrix

�eHuber-White variance-covariance matrix is a consistent estimate
of the heteroskedastic Σ:

V̂[є] = Σ̂ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

є̂21 0 0 ⋯ 0
0 є̂22 0 ⋯ 0
0 0 є̂23 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ є̂2n

⎞
⎟⎟⎟⎟⎟⎟
⎠
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Fixing Heteroskedasticity: Huber-White SEs

In R, we can calculate Huber-White SEs as:

library(car)

# returns variance -covariance matrix:

hccm(lm.cc, type="hc0")

# returns standard errors:

sqrt(diag(hccm(lm.cc, type = "hc0")))
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Fixing Heteroskedasticity: Small Sample Correction

A potential problem with Huber-White SEs is that it requires a larger
sample size. �us, we o�en use a small-sample correction to obtain
more conservative estimates:

V̂[є] = Σ̂ = n

n − k − 1

⎛
⎜⎜⎜⎜⎜⎜
⎝

є̂21 0 0 ⋯ 0
0 є̂22 0 ⋯ 0
0 0 є̂23 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ є̂2n

⎞
⎟⎟⎟⎟⎟⎟
⎠

�is is o�en known as HC1 and is used in many publications
(,robust option in Stata).
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Fixing Heteroskedasticity: Small Sample Correction

In R, we can calculate Huber-White SEs with di�erent small-sample
corrections as:

hccm(lm.cc, type="hc1")

hccm(lm.cc, type="hc2")

hccm(lm.cc, type="hc3")



Administrative Details Stocktake Regression Assumptions Missing Data

Heteroskedastic Variance-Covariance Matrix

We can characterize the variance of the error terms under
heteroskedasticity as weighted homoskedastic matrix:

V[є] = Σ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

a21 σ
2 0 0 ⋯ 0

0 a22σ
2 0 ⋯ 0

0 0 a23σ
2 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ a2nσ2

⎞
⎟⎟⎟⎟⎟⎟
⎠

= σ2

⎛
⎜⎜⎜⎜⎜⎜
⎝

a21 0 0 ⋯ 0
0 a22 0 ⋯ 0
0 0 a23 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ a2n

⎞
⎟⎟⎟⎟⎟⎟
⎠

If we knew weights ai, we could reweight data using
1
ai
. Problem is we

don’t know the weights exactly...
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Fixing Heteroskedasticity: Weighted Least Squares
(WLS)

An alternative to heteroskedasticity-consistent standard errors is using
WLS whereby we weight observations that we believe have small error
variance higher.
▸ E�cient if we correctly specify weights
▸ Wemay have good guess as to what weights are
▸ Unbiased for βs and consistent for V(β) even if we get weights
wrong

If we, for example, believe that error variance is inversely proportional
to income:

lm.cc.wt <- lm(lm.cc$call , weights =1/income , data=cc)
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Violations of Normality Assumption

Why is non-normality an issue?

In small samples:
▸ β̂ will not have normal sampling distribution
▸ Test statistics will not have t distributions
▸ Since SEs are o�, we have incorrect probability of Type I error in
testing and incorrect coverage of con�dence intervals

Good news: in large samples, Central Limit �eorem makes these
problems go away!
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Diagnosing Non-Normality

▸ Density plots of errors: studentized residuals should have t
distribution with n − k − 2 degrees of freedom

▸ Formal tests
▸ Quantile-quantile (Q-Q) plots
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Diagnosing Non-Normality: Q-Q Plots

▸ Generally: we compare quantiles of empirical distribution with
quantiles of theoretical distribution

▸ Speci�cally: we compare quantiles of studentized residuals to
quantiles of t distribution
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Diagnosing Non-Normality: Q-Q Plots

In R:

library(car)

qqPlot(lm.cc)

plot(lm.cc ,2)
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Diagnosing Non-Normality: Q-Q Plots

-2 -1 0 1 2

0
2

4
6

t Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
(lm

.c
c)



Administrative Details Stocktake Regression Assumptions Missing Data

Violations of Linearity Assumption

Why is non-linearity an issue?

▸ Bias in estimated regression function (for population CEF, not for
best linear approximation to CEF)

▸ Leads to bad inferences and poor prediction
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Diagnosing Non-Linearity: GAM Plots

Fitting a generalized additive model (GAM) can reveal non-linearities:

library(mgcv)

gam.cc <- gam(ccexpend ~ s(income) + s(age) +

homeowner , data=cc)

▸ Using s() around the variables allows GAM to choose smooth
functional form

▸ Algorithmminimizes deviations from surface without �tting data
too closely (bias-variance tradeo�)
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Diagnosing Non-Linearity: GAM Plots

> summary(gam.cc)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 252.06 45.78 5.506 6.26e-07 ***

homeowner 27.94 83.10 0.336 0.738

---

Approximate significance of smooth terms:

edf Ref.df F p-value

s(income) 1.912 2.38 6.151 0.00229 **

s(age) 1.000 1.00 0.171 0.68057

---

R-sq.(adj) = 0.199 Deviance explained = 24.3%

GCV score = 86930 Scale est. = 81000 n = 72
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Diagnosing Non-Linearity: GAM Plots

▸ Equilalent degrees of freedom (edf): how many variables are
needed to de�ne smooth regression surface

▸ edf= k: smooth surface is linear
▸ edf> k: smooth surface deviates from linear (and requires
additional variables)

▸ Our example: edf for income is ≈ 2, indicating that we should
consider squared term

▸ F-value / p-value: probability that variable would have at least
this extreme an e�ect under null hypothesis that there is no
relationship

▸ Generalized cross-validation (GCV) score = predictive
(out-of-sample) performance of smooth regression surface
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Diagnosing Non-Linearity: GAM Plots

We can also examine partial relationships between explanatory
variables and the outcome graphically!
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Diagnosing Non-Linearity: GAM Plots

We can also examine partial relationships between explanatory
variables and the outcome graphically!
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Fixing Non-Linearity

▸ Transform outcome variable (i.e. using log or square root)
▸ Transform explanatory variables (i.e. using log or square root) or
add higher order terms

▸ Use semi-parametric or nonparametric models (i.e. GAMs)
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Missingness Mechanism

How was missingness generated?
We can characterize the missingness mechanism as:

▸ Missing completely at random (MCAR): missingness unrelated
to variables in data

▸ Missing at random (MAR): missingness related to observed data
▸ Not missing at random (NMAR): missingness related to
unobserved data



Administrative Details Stocktake Regression Assumptions Missing Data

Missingness in Our Data

Let’s work with ccarddata_missing.csv, which now has missing
values of credit card expenditures (outcome) for some observations.

How can we characterize this missingness?

X̄missing X̄non-missing X̄missing − X̄non-missing t-stat
age 33.68 29.13 4.54 2.80

income 3.62 3.27 0.34 0.85
homeowner 0.35 0.39 -0.04 -0.36
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Missingness in Our Data

We can also look at missingness mechanism graphically:
### create indicator for missingness

cc.missing$missing <- 0

cc.missing[is.na(cc.missing$ccexpend) ,]$missing <-1

### create vector of t-stats and plot

t.stats <- c(t.test(cc.missing[cc.missing$missing ==1,"
age"],cc.missing[cc.missing$missing ==0,"age"])$
statistic

,t.test(cc.missing[cc.missing$missing ==1,"income"],cc.
missing[cc.missing$missing ==0,"income"])$statistic

,t.test(cc.missing[cc.missing$missing ==1,"homeowner"],
cc.missing[cc.missing$missing ==0,"homeowner"])$
statistic)

dotchart(t.stats , labels=c("age","income","homeowner")

, xlim=c(-3,3), xlab="Standardized Diff. in Means"

,pch =19)

abline(v=0, col="red", lty =2)
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Missingness in Our Data

age
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Missingness in Our Data

�e �rst 6 observations in our dataset are:

ccexpend age income homeowner

124.98 38 4.52 1
33 2.42 0

15.00 34 4.50 1
31 2.54 0

546.50 32 9.79 1
92.00 23 2.50 0

Missing values shaded in red.
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Dealing with Missingness

A few common ways to deal with missingness:

▸ Complete case analysis
▸ Mean imputation
▸ Regression imputation
▸ Multiple imputation
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Complete Case Analysis

ccexpend age income homeowner

124.98 38 4.52 1
33 2.42 0

15.00 34 4.50 1
31 2.54 0

546.50 32 9.79 1
92.00 23 2.50 0

In R:

# R automatically row -deletes observations with

missing data

lm(ccexpend ~ income + homeowner + age , data=cc.

missing)
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Mean Imputation

ccexpend age income homeowner

124.98 38 4.52 1
ȳ 33 2.42 0

15.00 34 4.50 1
ȳ 31 2.54 0

546.50 32 9.79 1
92.00 23 2.50 0

In R, mean of outcome is:

mean(cc.missing$ccexpend , na.rm=TRUE)

# mean is 209.4542
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Mean Imputation

ccexpend age income homeowner

124.98 38 4.52 1
209.45 33 2.42 0
15.00 34 4.50 1
209.45 31 2.54 0
546.50 32 9.79 1
92.00 23 2.50 0
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Regression Imputation

ccexpend age income homeowner

124.98 38 4.52 1
ŷ2 33 2.42 0

15.00 34 4.50 1
ŷ4 31 2.54 0

546.50 32 9.79 1
92.00 23 2.50 0

In R, we can predict missing values:
lm.cc.missing <- lm(ccexpend ~ income + homeowner +

age , data=cc.missing)

missing.df<- cc.missing[is.na(cc.missing$ccexpend),c("
income","homeowner","age")]

predict(lm.cc.missing ,missing.df)
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Regression Imputation

ccexpend age income homeowner

124.98 38 4.52 1
94.41 33 2.42 0
15.00 34 4.50 1
109.15 31 2.54 0
546.50 32 9.79 1
92.00 23 2.50 0
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Multiple Imputation

What limitations of previous imputation methods does multiple
imputation address?
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