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1 Overview: Maximum Likelihood vs. Bayesian Estimation
�is note is about the mechanics of maximum likelihood estimation (MLE). However, before delving into the mechanics of
�nding the MLE, let’s step back and lay out maximum likelihood as a theory of inference. Speci�cally, it will prove useful to
compare maximum likelihood to Bayesian theory of inference.

In general, what is statistical inference? It’s the process of making a statement about how data is generated in the world. We
can think of the data that we observe in the world as a product of some data generation process (DGP) that is fundamentally
unknown and likely highly convoluted. However, it is our goal as social scientists or applied statisticians to use observed data to
learn something about the DGP. In parametric inference, we are going to assume that we can represent the DGP by a statistical
model. Remember that whatever model we choose, it will essentially never be “right”.�us, the question is whether or not the
model is useful. In the context of this note, we will limit ourselves to very common probability distributions as our models.

Once we have selected a probability distribution to represent the data generation process, we aren’t done, for in fact we have
not speci�ed a unique distribution, but just a family of distributions. �is is because we leave one (or more) parameters as
unknown.�e goal of statistical inference is then to use observed data to make a statement about parameters that govern our
model.

To introduce some notation, we are going to call the model, or probability distribution, that we choose f (⋅). �is probability
distribution is going to depend on a parameter θ (or vector of parameters, θ = θ1 , θ2 , ..., θk) that characterize the distribution.
�e set Ω of all possible values of a parameter or the vector of parameters is called the parameter space. We then observe some
data, drawn from this distribution:

X ∼ f (x∣θ)

�e random variables X1, ... ,Xn are independent and identically distributed (iid) because they are drawn independently from
the same DGP.�e goal is to use the observed data x to learn about θ. Knowing this parameter speci�es a particular distribu-
tion from the family of distributions we have selected to represent the data generation process. In the end, we hope that θ is a
substantively meaningful quantity that teaches us something about the world (or at least can be used to derive a substantively
interesting quantity of interest).

So far, we’ve just set up the general inferential goal. Now, we can introduce di�erent theories of actually achieving said goal.
Speci�cally, we focus on two general approaches to inference and estimation: frequentist /maximum likelihood andBayesian.
�e two are distinguished by their sources of variability, the mathematical objects involved, and estimation and inference. It is
important to keep track of the sources of randomness in each of these paradigms since di�erent estimators are used for random
variables as opposed to constants.

Let’s formalize the notion of inference using Bayes’ Rule. First, let’s restate the goal of inference: it’s to estimate the proba-
bility that the parameter governing our assumed distribution is θ conditional on the sample we observe, denoted as x. We
denote this probability as ξ(θ∣x). Using Bayes’ Rule, we can equate this probability to:

ξ(θ∣x) = f (x∣θ)ξ(θ)
gn(x)

= fn(x∣θ)ξ(θ)
∫
Ω

fn(x∣θ)ξ(θ)
, for θ ∈ Ω

Now, since the denominator in the expression above is a constant in the pdf of θ (gn(x) is simply a function of the observed
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data), the expression can be rewritten as:

ξ(θ∣x)
´¹¹¹¹¹¸¹¹¹¹¹¶
posterior

∝ fn(x∣θ)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
likelihood

ξ(θ)
±
prior

�e two theories of inference – frequentist and Bayesian – diverge at this step. Under the frequentist paradigm, the parameter
θ is a constant, albeit an unknown constant. �us, the prior is meaningless and we can absorb ξ(θ) into the proportionality
sign (along with the normalization constant / denominator from Bayes’ Rule above). �e result is what R.A. Fisher termed
likelihood:

L(θ∣x)∝ fn(x∣θ)

Sometimes, the likelihood is also written in terms of an unknown constant k(x):

L(θ∣x) = k(x) fn(x∣θ)

Since k(x) is never known, likelihood is not a probability density. Instead, likelihood is some positive multiple of fn(x∣θ).

To summarize, the parameters in the frequentist setting (likelihood theory of inference) are unknown constants. �erefore,
we can ignore ξ(θ) and just focus on the likelihood since everything we know about the parameter based on the data is sum-
marized in the likelihood function.�e likelihood function is a function of θ: it conveys the relative likelihood of drawing the
sample observations you observe given some value of θ.

In contrast to frequentist inference, in the Bayesian setting, the parameters are latent random variables, which means that
there is some variability attached to the parameters. �is variability is captured through one’s prior beliefs about the value of
θ and is incorporated through the prior, ξ(θ). �e focus of Bayesian inference is estimating the posterior distribution of the
parameter, ξ(θ∣x).

�e posterior distribution of θ, ξ(θ∣x), is the distribution of the parameter conditional upon the observed data and provides
some sense of (relative) uncertainty regarding our estimate for θ. Note that we cannot obtain an absolute measure of uncer-
tainty since we do not truly know ξ(θ). However, even before the data is observed, the researcher may know where θ may
lie in the parameter space Ω. �is information can thus be incorporated through the prior, ξ(θ) in Bayesian inference. Fi-
nally, the data is conceptualized as a joint density function conditional on the parameters of the hypothesized model. �at
is, fn(x1 , x2 , . . . , xn ∣θ) = fn(x∣θ). For an iid sample, we get f (X1∣θ) ⋅ f (x2∣θ)⋯ f (xn ∣θ). �e term fn(x∣θ) is known as the
likelihood.

To recap, where does variability in the data we observe come from? In both frameworks, the sample is a source of variabil-
ity. �at is, X1 , ..., Xn form a random sample drawn from some distribution. In the Bayesian mindset, however, there is some
additional variability ascribed to the prior distribution on the parameter θ (or vector of parameters).�is variability from the
prior may or may not overlap with the variability from the sample. Frequentists, by contrast, treat the parameters as unknown
constants.

As a result of the di�erences in philosophies, the estimation procedure and the approach to inference di�er between frequentists
and Bayesians. Speci�cally, under the frequentist framework, we use the likelihood theory of inference where the maximum
likelihood estimator (MLE) is the single point summary of the likelihood curve. It is the point which maximizes the likelihood
function. In contrast, the Bayesian approach tends to focus on the posterior distribution of θ and various estimators, such as
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the posterior mean (PM) or maximum a posteriori estimator (MAP), which summarize the posterior distribution.

To summarize the distinction between the two approaches to inference, it helps to examine a typology of mathematical ob-
jects. It classi�es objects based on whether they are random or not, and whether they are observed or not. When confronted
with inference, one must always ask if is there a density on any given object. A presence of a density implies variability. Fur-
thermore, one must ask if the quantity is observed or not observed.

Observed Not Observed

Variable (Var > 0)
Random Variable Latent Random Variable

X (the data) θ in Bayesian inference

Not Variable (Var = 0)
Known Constant Unknown Constant

α, β, which govern ξ(θ) in Bayesian inference θ in frequentist inference
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2 Introduction to Maximum Likelihood Estimation

2.1 What is Likelihood and the MLE?
Say that one has a sample of n iid observations X1 , X2 , ..., Xn that come from some probability density function characterized by
an unknown parameter θ0: f0 = f (⋅∣θ0), where θ0 belongs to a parameter space Ω. We want to �nd θ̂ that is the best estimator
of θ0. Speci�cally, the main approach of maximum likelihood estimation (MLE) is to determine the value of θ that is most
likely to have generated the vector of observed data, x.

�e likelihood, L(θ∣x), is a function that assigns a value to each point in parameter space Ω which indicates how likely each
value of the parameter is to have generated the data. �is is proportional to the joint probability distribution of the data as a
function of the unknown coe�cients. According to the likelihood theory of inference, the likelihood function summarizes all
the information we have about the parameters given the data we observe.�e method of maximum likelihood obtains values
of model parameters that de�ne a distribution that is most likely to have resulted in the observed data. For many statistical
models, the MLE estimator is just a function of the observed data. Furthermore, we o�en work with the log of the likelihood
function, denoted as log L(θ∣x) = ℓ(θ∣x). Note that since the log is a monotonic function, this does not change any information
we have about the parameter.

As has been alluded to, it is important to distinguish the likelihood of the parameter θ from the probability distribution of
θ conditional upon the data, which is obtained via Bayes’�eorem.�e likelihood is not a probability. Instead, the likelihood
is a measure of relative uncertainty about the plausible values of θ, given by Ω.�is relativity is exactly what allows us to work
with the log of the likelihood and to scale the likelihood using monotonic transformations. As a result, we can only compare
likelihoods within, not across, data sets.

Let us formally de�ne the likelihood as proportional to the joint probability of the data conditional on the parameter:

L(θ∣x)∝ f (x∣θ) =
n

∏
i=1

f (x i ∣θ)

�e maximum likelihood estimate of θ, which we denote as θ̂MLE , is the value of θ in parameter space Ω that maximizes the
likelihood (or log-likelihood) function. It is the value of θ that is most likely to have generated the data.

Mathematically, we write the MLE as:

θ̂MLE = max
θ∈Ω

L(θ∣x) = max
θ∈Ω

n

∏
i=1

f (x i ∣θ)

Alternatively, we could work with the log-likelihood function because maximizing the logarithm of the likelihood is the same
as maximizing the likelihood (due to monotonicity):

θ̂MLE = max
θ∈Ω
log L(θ∣x) = max

θ∈Ω
ℓ(θ∣x) = max

θ∈Ω

n

∑
i=1
log( f (x i ∣θ))

How do we actually �nd the MLE?�ere are two alternatives: analytic and numeric. We won’t focus on numeric optimization

5



methods in this note, but analytically, �nding the MLE involves taking the �rst derivative of the log-likelihood (or likelihood
function), setting it to 0, and solving for the parameter θ. We then need to check that we have indeed obtained a maximum by
calculating the second derivative at the critical value and checking that it is negative.

To further introduce some terminology, let us de�ne the score as the �rst derivative of the log-likelihood function with re-
spect to each of the parameters (gradient). For a single parameter:

S(θ) = ∂ℓ(θ)
∂θ

�e �rst order condition thus involves setting the score to zero and solving for θ.

In the case of multiple parameters (a vector θ of length k), the score is de�ned as:

S(θ) = ∇ℓ(θ) =

⎛
⎜⎜⎜⎜⎜
⎝

∂ℓ(θ)
∂θ 1

∂ℓ(θ)
∂θ2

⋮
∂ℓ(θ)
∂θ k

⎞
⎟⎟⎟⎟⎟
⎠

We can visualize the log-likelihood curve quite easily using R (at least for the most common distributions). Let’s visual-
ize a log-likelihood curve for µ in a normal distribution with unknown µ and a known σ = 1. �e observed data is x =
{7, 6, 5, 5, 7, 5, 6, 3, 4, 6}.

my.data <- c(7,6,5,5,7,5,6,3,4,6)

norm.ll<- function(x) return(sum(dnorm(my.data,mean=x,sd=1,log=TRUE)))

norm.ll <- Vectorize(norm.ll)

curve(norm.ll, from=0,to=10, lwd=2, xlab=expression(mu),ylab="Log-Likelihood")

Similarly, we can visualize a log-likelihood curve for the parameter λ in a Poisson distribution governed by that parameter.�e
observed data is x = {2, 1, 1, 4, 4, 2, 1, 2, 1, 2}.

my.data <- c(2,1,1,4,4,2,1,2,1,2)

pois.ll<- function(x) return(sum(dpois(my.data,lambda=x,log=TRUE)))

pois.ll <- Vectorize(pois.ll)

curve(pois.ll, from=0,to=10, lwd=2, xlab=expression(lambda),ylab="Log-Likelihood")

�e results of these two plots, along with the MLE estimates of the respective parameters, are presented in Figure 1. �e log-
likelihood surface for a 2-parameter example (a normal distribution with unknown mean and variance) is presented in Figure
2.
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Figure 1: Examples of Log-Likelihood Functions
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(a) Log-Likelihood curve for µ in a normal distribution based
on the following data: {7, 6, 5, 5, 7, 5, 6, 3, 4, 6}. Note σ = 1.
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(b) Log-Likelihood curve for λ in a Poisson distribution based
on the following data: {2, 1, 1, 4, 4, 2, 1, 2, 1, 2}.

Figure 2: Example of Log-Likelihood Function for Two Parameters: µ and σ in a normal distribution

(a) Log-Likelihood surface for both µ and
σ in a normal distribution.
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(b) Marginal log-likelihood curve for µ.
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(c) Marginal log-likelihood curve for σ .

2.2 Examples of Analytical MLE Derivations

2.2.1 MLE Estimation for Sampling from Bernoulli Distribution

X1 ...Xn form a random sample from a Bernoulli distribution with unknown parameter 0 ≤ θ ≤ 1. We need to �nd the MLE estimator
for θ.

L(θ ∣ x1 , . . . , xn) = fn(x∣θ) =
n

∏
i=1

θx i (1 − θ)1−x i

Taking the log of the function, we get:

ℓ(θ∣x) = (
n

∑
i=1

x i) log θ + (n =
n

∑
i=1

x i) log(1 − θ)

7



Optimizing ℓ(θ∣x) by taking its derivative and �nding its roots yields the estimator θ̂ = X̄.

2.2.2 MLE Estimation of Mean and Variance for Sampling from Normal Distribution

X1 ...Xn form a random sample from a Normal distribution with unknown parameters θ = (µ, σ 2). We need to �nd the MLE estimator
for θ.

Starting with the likelihood:

L(θ ∣ x1 , . . . , xn) = fn(x∣µ, σ 2) =
1

(2πσ 2)n/2
exp[− 1

2σ 2
n

∑
i=1

(x i − µ)2]

Taking the log of the function, we get:

ℓ(θ ∣ x1 , . . . , xn) = −
n

2
log(2π) − n

2
log(σ 2) − 1

2σ 2
n

∑
i=1

(x i − µ)2

�e likelihood function needs to be optimized with respect to parameters µ and σ 2 , where −∞ < µ <∞ and σ 2 > 0.

First, treat σ 2 as known and �nd µ̂(σ 2). Now, we can take the partial derivative of the log likelihood with respect to the mean
parameter and set it equal to zero:
∂ℓ(θ)
∂µ

= 1
σ 2

n

∑
i=1

(x i − µ) = 0

µ̂ =

n

∑
i=1

x i

n
= X̄n

It is good practice to check that the obtained estimator is indeed the maximum using the second order condition:
∂2ℓ(θ)
∂µ2

= −n
σ 2

< 0 ∀ n, σ 2 > 0

Now for the variance. Plugging µ̂ = x̄n in for µ in the log-likelihood function and taking the derivative with respect to σ 2 :
∂ℓ(θ)
∂σ 2

= −n
2
1

σ 2
+ 1
2(σ 2)2

n

∑
i=1

(x i − x̄n)2 = 0

Solving for σ 2 , we get:

σ̂ 2 = 1
n

n

∑
i=1

(x i − x̄n)2

�e MLEs for µ and σ 2 are thus: µ̂ = X̄ and σ̂ 2 = 1
n

n

∑
i=1

(X i − X̄n)2

2.2.3 Gamma Distribution

For the gamma distribution, θ is the scale parameter and α is the shape parameter. We seek the conditions for the maximum likelihood

estimates of (θ , α).

�e likelihood function for a gamma distribution is the following:

L(α, θ∣x) = fn(x∣α, θ) =
1

Γn(α) ⋅ θnα
(

n

∏
i=1

x i)
α−1
exp(−

n

∑
i=1

x i

α
)

Taking the log, we obtain:

ℓ(α, θ) = −n ⋅ log(Γ(α)) − nα ⋅ log(θ) + (α − 1)
n

∑
i=1
log(x i) −

1
θ

n

∑
i=1

x i
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Taking the derivative of the log likelihood with respect to θ and setting it equal to 0:
∂ℓ(α, θ)

∂θ
= −nα

θ
+ 1

θ2

n

∑
i=1

x i = 0

Solving for θ, we obtain the following MLE for θ:

θ̂∣α =

n

∑
i=1

x i

α ⋅ n
= 1

α
x̄n

Plugging this back into the log likelihood function, taking its derivative with respect to α, and setting the result equal to 0:
dL(α, ˆθ∣α)

dα
= −n ⋅ Γ

′(α)
Γ(α)

− n ⋅ log( 1
α
x̄n) +

n

∑
i=1
log(x i) = 0

dL(α, ˆθ∣α)
dα

= −n ⋅ Γ
′(α)

Γ(α)
+ n ⋅ log(α) − n ⋅ log(x̄n) +

n

∑
i=1
log(x i) = 0

Solving for α as far as we can (the answer remains in terms of the digamma function), we obtain the following condition for

the MLE of α:

log(α) − Γ
′(α)
Γ(α)

= log(x̄n) −

n

∑
i=1
log(x i)

n

�erefore, the MLE values of α and θ must satisfy the following 2 equations (there is no unique solution) are:

log(α̂) − Γ
′(α̂)
Γ(α̂)

= log(x̄n) −

n

∑
i=1
log(x i)

n

θ̂ = 1
α̂
x̄n

2.2.4 Multinomial Distribution

�e data follows a multinomial distribution. We begin by writing down the likelihood function for all the data:

L(θ∣n) = fn(n∣θ1 , θ2 , ..., θk) =
n!

n1!n2!⋯nk !
θn1
1 θn2

2 ⋯θ
nk
k
for

k

∑
i=1

n i = n

Taking the log of the likelihood function, we get:

ℓ(θ1 , ..., θk) = log(n!) −
k

∑
i=1
log(n i !) +

k

∑
i=1

n i ⋅ log(θ i)

Before we can maximize the log of the likelihood function, we have to remember that we are maximizing it subject to the con-

straint that
k

∑
i=1

θ i = 1 (a property of the multinomial distribution). �erefore, we will proceed by maximizing the following equation
using Lagrange multipliers:

Λ(θ1 , ..., θk , λ) = L(θ1 , ..., θk) + λ ⋅ (
k

∑
i=1

θ i − 1)

Now, we solve ∇θ 1 ,θ2 , . . . ,θk ,λΛ(θ1 , ..., θk , λ) = ∇θ 1 ,θ2 , . . . ,θk ,λ(ln(n!) −
k

∑
i=1

ln(n i !) +
k

∑
i=1

n i ⋅ ln(θ i) + λ ⋅ (
k

∑
i=1

θ i − 1)) = 0 for θ i and

get n+1 �rst-order conditions:

θ i =
n i

λ
for all i = 1, 2, ..., k and

k

∑
i=1

θ i = 1

Since
k

∑
i=1

θ i =
k

∑
i=1

n i

λ
= n

λ
= 1, λ = n.

∴θ̂ i ,MLE =
n i

n
for all i = 1, 2, ..., k
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Note: Alternatively, the same solution is obtained for θ̂ i ,MLE if we model being the ith type of individual as a success in a

binomial distribution of n draws (where the failures are belonging to all the k − 1 remaining types).

2.2.5 Uniform Distribution

We want to solve for the MLE of θ for a uniform distribution on the interval [0, θ]. We begin by writing the likelihood function for θ,

which is the joint density of the observed data conditional on θ:

f (x∣θ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
θn

for 0 ≤ x i ≤ θ (i = 1, ..., n)

0 otherwise

Taking the log of the likelihood function:

L(θ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−n ⋅ log(θ) for 0 ≤ x i ≤ θ (i = 1, ..., n)

0 otherwise

From the equation for L(θ) above, one can see that theMLE of θ must be a value of θ for which 0 ≤ x i ≤ θ for all i = 1, ..., n. Since L(θ)
is a monotonically decreasing function of θ, we need the smallest value of θ such that θ ≥ x i for all i = 1, ..., n in order to maximize the
log likelihood.�is value is θ = max(x1 , ..., xn).

�erefore, the MLE is:

θ̂MLE = max(X1 , ..., Xn).
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3 Properties of MLE:�e Basics
Why do we use maximum likelihood estimation? It turns out that subject to regularity conditions, the following properties
hold for the MLE (see proofs in Section 5):

1. Consistency: As sample size (n) increases, the MLE (θ̂MLE) converges to the true parameter, θ0:

θ̂MLE

p
Ð→ θ0

2. Normality: As sample size (n) increases, the MLE is normally distributed with a mean equal to the true parameter (θ0)
and the variance equal to the inverse of the expected sample Fisher information at the true parameter (denoted asIn(θ0)):

θ̂MLE ∼ N(θ0 , (−E[
∂2ℓ(θ∣x)

∂θ2
∣
θ=θ0

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

In(θ0)

)
−1
)

However, using the consistency property of the MLE and observed sample Fisher information, we can use the inverse
of the observed sample Fisher information evaluated at the MLE, denoted as Jn(θ̂MLE) to approximate the variance.
Note that the observed sample Fisher information, which will be de�ned in detail below, is the negation of the second
derivative of the log-likelihood curve.

θ̂MLE ∼ N(θ0 , (−[
∂2ℓ(θ∣x)

∂θ2
∣
θ=θ̂MLE

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Jn(θ̂MLE)

)
−1
)

3. E�ciency: As sample size (n) increases, MLE is the estimation procedure that generally provides the lowest variance.

4. In a �nite sample, MLE gives theminimum variance unbiased estimator, or MVUE, if it exists.

3.1 Functional Invariance of MLE

A very useful property of the MLE is its functional invariance.�e principle of invariance states that if we know that θ̂ is the
MLE of θ, then the MLE of g(θ) is g(θ̂), where g(θ) is a function of θ.

Proof:
By de�nition of the MLE: θ̂MLE ∈ Ω and ℓ(θ̂MLE ∣x) ≥ ℓ(θ∣x)∀θ ∈ Ω.�us, setting λ̂ = g(θ̂):

ℓ(g−1(λ̂)∣x) ≥ ℓ(g−1(λ)∣x)∀λ ∈ Λ

∴ λ̂ = g(θ̂) is MLE of λ for a model with density ℓ(g−1(λ)∣x).
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4 Fisher Information and Uncertainty of MLE
In addition to providing the MLE as a single point summary of the likelihood curve, we would like to quantify how certain we
are in our estimate. We saw in the previous section that the variance of the MLE is asymptotically given by the inverse of the
expected Fisher information. However, we usually approximate expected Fisher information with observed Fisher information.
What are these two quantities? In this section, we’ll de�ne the observed and expected Fisher information, as well as state the
intuition behind why these are useful quantities.�e more theoretical derivations and proofs follow in subsequent sections.

First, let’s develop some basic intuition regarding uncertainty of the MLE. Note that the curvature of the likelihood curve
around the MLE contains information about how certain we are as to our estimate. Before we wade into the weeds of speci�c
calculations, let’s understand the intuition behind this. Looking at Figure 3, we can see that intuitively, we are more certain in
our MLE if the curve has a steeper slope around the MLE than if it has a slope closer to 0. �at is, we have more certainty in
an MLE if the second derivative at the MLE is a more negative number. Recall that at the MLE, the slope of the log-likelihood
function is 0, so the second derivative of the log-likelihood curve evaluated at the MLE captures how quickly the slope changes
from 0 as you move away from the MLE in either direction.�is comes from the interpretation of the second derivative as the
rate of change of the slope.

Figure 3: Example of second derivatives.
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How do we formalize this intuition? Let’s de�ne the observed Fisher information, termed J , to be the negation of the second
derivative of the log-likelihood function. Speci�cally, we will evaluate it at the MLE1:

J (θ̂MLE) = −
∂2

∂θ2
ℓ(θ∣x)∣

θ̂MLE
= − ∂2

∂θ2
log f (x∣θ)∣

θ̂MLE

1Technically, we can calculate the observed Fisher information at any value of θ, but we will always talk about it as evaluated at the MLE.
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Note that we negate the second derivative (which is always negative at the MLE) so that we always have a positive observed
Fisher information. Now, the intuition we developed about the steepness of the curve follows through: the steeper the curve
around the MLE, the larger the observed Fisher information.

Note that in the case of multiple parameters (we have a vector of k parameters θ), the observed Fisher information is the
negation of the hessian, the matrix of second derivatives. Again, here we evaluate it at the MLE.

J (θ̂MLE) = −∇∇T ℓ(θ∣x)∣θ̂MLE
= −

⎛
⎜⎜⎜⎜⎜⎜
⎝

∂2

∂θ21

∂2

∂θ 1∂θ2
⋯ ∂2

∂θ 1∂θ k

∂2

∂θ2∂θ 1

∂2

∂θ22
⋯ ∂2

∂θ2∂θ k

⋮ ⋮ ⋱ ⋮
∂2

∂θ k ∂θ 1

∂2

∂θ k ∂θ2
⋯ ∂2

∂θ2
k

⎞
⎟⎟⎟⎟⎟⎟
⎠

ℓ(θ∣x)∣θ̂MLE

What is the theoretical rationale for how the Fisher information is linked to the variance of the maximum likelihood estimate?
It turns out that we can prove, using the Central Limit�eorem, that the MLE is asymptotically normal with a mean equal to
the true parameter value and variance equal to the inverse of the expected Fisher information evaluated at the true parameter
value (see proof). To understand this, we need to de�ne the expected Fisher information. Having de�ned the observed Fisher
information, we can de�ne the expected Fisher information as the expectation of the observed Fisher information:

I(θ) = −E∂
2ℓ(θ∣x)
∂θ2

�e expected Fisher information is thus a function of θ – the parameter we are trying to estimate – that gives us the expected
information across the samples we could draw from our distribution of interest. �at is, imagine drawing 1,000,000 di�erent
samples (or even better, in�nite samples!) from the distribution of interest (even though in reality we observe only one). Each
sample will have a slightly di�erent MLE and also a slightly di�erent observed Fisher information (since observed Fisher infor-
mation is a sample-speci�c quantity).�e observed Fisher information we expect, on average, across all possible samples is the
expected Fisher information. Moreover, note that since the MLEs are di�erent from sample to sample, we also have a variance
acrossMLEs – this is in fact the variance we are a�er (recall that in the frequentist inferential framework, all randomness comes
from sampling and the parameters are �xed)! �e inverse of the expected Fisher information captures this variance. For an
example that will elucidate these concepts, see Figure 4.

We can also be more speci�c as to what kind of Fisher information we are dealing with. Speci�cally, we can de�ne the sample
expected Fisher information across all the random variables in our sample and the unit expected Fisher information for just
one random variable.

�e unit expected Fisher information is de�ned for one random variable from our distribution:

I(θ) = −E ∂2

∂θ2
ℓ(θ∣x)

�e sample expected Fisher information is de�ned as:

13



In(θ) = −E ∂2

∂θ2
ℓ(θ∣x)

Note that for distinction, we have added an n subscript to explicitly di�erentiate the sample Fisher information from the unit
Fisher information.

Since our sample is a set of n iid random variables, we can relate the sample Fisher information to the unit Fisher informa-
tion using the linearity of expectation and the fact that we can bring the derivative operator within the summation sign :

In(θ) = −E ∂2

∂θ2
ℓ(θ∣x) = E ∂2

∂θ2
[

n

∑
i=1

f (x i ∣θ)] =
n

∑
i=1
E[ ∂2

∂θ2
f (x∣θ)] = n ⋅ E[ ∂2

∂θ2
f (x∣θ)] = nI(θ)

∴ In(θ) = nI(θ)

�is tells us that for a sample of iid random variables, the expected sample information is just a sum of the individual expected
informations across the n observations.�is relationship becomes important in the proofs of the asymptotic distribution of the
MLE.

Finally, you may ask how we can get away with using the observed Fisher information even though we have just stated that
the MLE is asymptotically distributed normally with a variance equal to the inverse of the expected Fisher information? It in
fact turns out that the observed Fisher information is consistent for the expected Fisher information. �at is, we can prove
using the law of large numbers that the observed information converges to the expected Fisher information as the sample size
increases. Moreover, we can evaluate the observed Fisher information at the MLE instead of at the true (unknown) value of
the parameter because of the consistency of the MLE (proven below). In most applications, we thus use the observed Fisher
information.

4.0.1 Example of Calculating Fisher Information: Bernoulli Distribution

Suppose that we have a sample X = {X1 , ..., Xn} such that X ∼ Bern(p) (iid).

Let’s write down the log-likelihood and solve for the MLE:

ℓ(p) = log
n

∏
i=1

p
x i (1 − p)1−x i

ℓ(p) = log p∑ x i (1 − p)n−∑ x i

ℓ(p) =∑ x i log p + (n −∑ x i) log(1 − p)

Using the �rst order condition to solve for the MLE:

∂ℓ(p)
∂p

= ∑ x i

p
− n −∑ x i

1 − p
= 0

p̂MLE = X̄

14



What is the second derivative of the log-likelihood?

∂2ℓ(p)
∂p2

= −∑ x i

p2
− n −∑ x i

(1 − p)2

We now de�ne expected Fisher information as the expected value of the negation of the second derivative

In(p) = E [
∑ x i

p2
+ n −∑ x i

(1 − p)2
]

Since E[X] = p:

In(p) =
np

p2
+ n − np

(1 − p)2

Simplifying:

In(p) =
n

p
+ n

1 − p
= n

p(1 − p)

We have found the expected sample �sher information for X1 , ..., Xn for Bern(p).

�e reason that this quantity is not particularly tractable for calculation of uncertainty is that it depends on p, the unknown
parameter! Instead, we can use the observed Fisher information, evaluated at the MLE:

J (p̂MLE) =
n

p̂MLE(1 − p̂MLE)
= n

X̄(1 − X̄)

Asymptotically, we thus know that p̂MLE has the following approximate distribution:

p̂MLE ∼ N (p,J (p̂MLE)−1)

We can easily use this to calculate con�dence intervals and test statistics.
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Figure 4: Illustration of consistency properties of MLE and observed Fisher information. For this illustration, the sample size
(n) was varied and at each n, 10,000 datasets were drawn from a Bern(0.3) distribution. For each dataset, the MLE and the
observed Fisher information were calculated.

(a) Simulation of MLEs from Bern(0.3) model by sample size
(n). For each n, 10,000 MLEs are plotted with black dots. �e
dotted red line denotes the true parameter (p = 0.3), while the
dotted blue line represents the mean MLE across the 10,000
samples at each value of n.

(b) Simulation of observed Fisher information from Bern(0.3)
model by sample size (n). For each n, 10,000 observed Fisher
informations are plotted with black dots.�e dotted red line de-
notes the expected Fisher information, derived in the example
above. �e gold line represents the simulated variance across
the 10,000 MLEs at each sample size. Finally, the solid blue line
represents themean of the observed Fisher informations at each
value of n.
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4.1 �e�eory of Fisher Information

4.1.1 Derivation of Unit Fisher Information

Let’s begin by deriving the expected Fisher information for one random variable, X. To do this derivation, we need to impose
some regularity conditions on the distribution of the random variable X:

• f (x∣θ) is the pdf of X, where X ∈ S (sample space) and θ ∈ Ω (parameter space)

• Assume that f (x∣θ) > 0 for each value x ∈ S and each value θ ∈ Ω

• Assume that the pdf of X is a twice di�erentiable function of θ

Recall that by de�nition of a pdf, the integral of a continuous density across the sample space S is 1:

∫
S
f (x∣θ)∂x = 1

Let’s assume that we are able to distribute a derivative operator within the integration operator, such that:

∂

∂x
∫
S
f (x∣θ)∂x = ∫

S

∂

∂x
f (x∣θ)∂x = ∫

S
f ′(x∣θ)∂x

and

∂2

∂x2
∫
S
f (x∣θ)∂x = ∫

S

∂2

∂x2
f (x∣θ)∂x = ∫

S
f ′′(x∣θ)∂x

Recall that the score of the log-likelihood is de�ned to be the �rst derivative of the log-likelihood:

S = ∂

∂θ
log L(θ∣x) = ∂

∂θ
log f (x∣θ)

We also know the following about the score from the properties of derivatives, speci�cally the chain rule:

ℓ′(θ∣x) = ∂

∂θ
log f (x∣θ) = 1

f (x∣θ)
⋅ f ′(x∣θ)

ℓ′(θ∣x) = f ′(x∣θ)
f (x∣θ)

We can �nd the expected value of the score using the de�nition of expectation:

Eθ [∂ℓ(θ∣x)
∂θ

] = ∫
S
ℓ′(θ∣x) f (x∣θ)∂x = ∫

S

f ′(x∣θ)
f (x∣θ)

f (x∣θ)∂x = ∫
S
f ′(x∣θ)∂x

Using our ability to exchange the order of integration and taking a derivative:

∫
S
f ′(x∣θ)∂x = ∂

∂θ
∫
S
f (x∣θ)∂x = ∂

∂θ
1 = 0
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∴ Eθ [ℓ′(θ∣x)] = 0

We have just shown that in expectation (across samples), the score will be 0.

Suppose that we de�ne the expected unit Fisher information for random variable X as the expectation of the squared score
(you’ll see shortly how it relates to our previous expression for the expected information).

I(θ) = Eθ

⎡⎢⎢⎢⎢⎣

⎛
⎝
∂ℓ(θ∣x)

∂θ

⎞
⎠

2⎤⎥⎥⎥⎥⎦
= Eθ[(ℓ′(θ∣x))2]

However, using the fact that Eθ [ℓ′(θ∣x)] = 0 and the de�nition of variance (Var(Y) = E[Y 2]−(E[Y])2 for any random variable
Y), the Fisher information can also be written as:

I(θ) = Eθ [(ℓ′(θ∣x))2] = Eθ [(ℓ′(θ∣x))2] − (Eθ [ℓ′(θ∣x)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Eθ[ℓ′(θ ∣x)]=0

)2 = Var[ℓ′(θ∣x)]

We have just shown that the expected unit Fisher information is equivalent to the variance of the score:

∴ I(θ) = Var[ℓ′(θ∣x)] = Var(S(θ))

Since the �rst moment of the score (the expected value) is zero, the Fisher information is also the second moment of the score.

We can also derive the (more familiar) expression for the expected information in terms of the second derivative of the log-
likelihood. First, let us de�ne the second derivative of the log-likelihood (using the quotient rule) as:

ℓ′′(θ∣x) = f (x∣θ) f ′′(x∣θ) − [ f ′(x∣θ)]2

[ f (x∣θ)]2

Separating the result into two fractions and simplifying:

ℓ′′(θ∣x) = f (x∣θ) f ′′(x∣θ)
[ f (x∣θ)]2

− [ f ′(x∣θ)]2

[ f (x∣θ)]2
= f ′′(x∣θ)

f (x∣θ)
− [ℓ′(θ∣x)]2

�e �nal step above follows from the fact that ℓ′(θ∣x) = f ′(x ∣θ)

f (x ∣θ)
.

Taking the expected value of both sides:

E[ℓ′′(θ∣x)] = E[ f
′′(x∣θ)
f (x∣θ)

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∫S f ′′(x ∣θ)dx=0

−E[[ℓ′(θ∣x)]2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I(θ)

�e result is a more familiar version of the expected unit Fisher information:
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I(θ) = −E[ℓ′′(θ∣x)]

4.1.2 Derivation of Sample Fisher Information

Let X1 , ..., Xn be an iid sample from the distribution f (x∣θ). We can then expand the expression for the expected unit Fisher
information to the case of a sample of random variables.

In an iid sample, we de�ne the log-likelihood as:

log L(θ∣x) = ℓ(θ∣x) =
n

∑
i=1

ℓ(θ∣x i)

Similarly, the score and second derivative of the log-likelihood for the sample can be expressed in terms of sums of unit scores
and second-derivatives:

S = ∂

∂θ
log L(θ∣x) = ℓ′(θ∣x) =

n

∑
i=1

ℓ′(θ∣x i)

∂2

∂θ2
log L(θ∣x) = ℓ′′(θ∣x) =

n

∑
i=1

ℓ′′(θ∣x i)

Using these expressions and the linearity of expectation, the expected value of the negative of the second derivative of the log-
likelihood function is:

E[−ℓ(θ∣x)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
In(θ)

=
n

∑
i=1
E[−ℓ′′(θ∣x i)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=I(θ)

But recall that E[−ℓ(θ∣x)] is just the de�nition of the expected sample Fisher information, denoted as In(θ). We just proved
that the following relation holds true for an iid sample of n random variables:

In(θ) = n ⋅ I(θ)

4.1.3 Relationship between Expected and Observed Fisher Information

�e observed Fisher information is de�ned as the negation of the second derivative of the log-likelihood:

Jn(θ) = − ∂2

∂θ2
ℓ(θ∣x) = − ∂2

∂θ2
log f (x∣θ)

We can rewrite the observed Fisher information as the sum of second derivatives:

Jn(θ) = −
n

∑
i=1

∂2

∂θ2
log f (x i ∣θ)

X1 , X2 , ..., Xn are iid hence the second derivatives on the right hand side of the expression above are also iid�us, by the law
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of large numbers, their average converges to the expectation of a single term:

1
n
Jn(θ)

p
Ð→ E[ ∂2

∂θ2
log f (x i ∣θ)] = I(θ)

�erefore, when n is large:
Jn(θ) ≈ n ⋅ I(θ) = In(θ)

So by the consistency we have just shown, we can use Jn(θ) instead of In(θ). However, we still do not know θ0, the true
value of the parameter (remember that the variance of theMLE asymptotically is In(θ0)−1. But it turns out θ̂MLE is a consistent
estimator for θ0, and as a result we use Jn(θ0)−1 as an estimator for the variance of the MLE.

4.1.4 Extension to Multiple Parameters

All the proofs above are generalizable to the case of a vector of k parameters, θ. �e multivariate extension of the score (�rst
derivative of log-likelihood curve) is:

S(θ) = ∇ℓ(θ∣x) =

⎛
⎜⎜⎜⎜⎜
⎝

∂ℓ(θ ∣x)
θ 1

∂ℓ(θ ∣x)
θ2

⋮
∂ℓ(θ ∣x)

θ k

⎞
⎟⎟⎟⎟⎟
⎠

In the multivariate case, we de�ne expected sample Fisher information as:

I(θ) = −E[∇2ℓ(θ∣x)] = −E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜
⎝

∂2

∂θ21

∂2

∂θ 1∂θ2
⋯ ∂2

∂θ 1∂θ k

∂2

∂θ2∂θ 1

∂2

∂θ22
⋯ ∂2

∂θ2∂θ k

⋮ ⋮ ⋱ ⋮
∂2

∂θ k ∂θ 1

∂2

∂θ k ∂θ2
⋯ ∂2

∂θ2
k

⎞
⎟⎟⎟⎟⎟⎟
⎠

ℓ(θ∣x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can show, analagously to the case with a single parameter, that the expected sample Fisher information is equal to the
variance of the score:

I(θ) = −E[∇2ℓ(θ∣x)] = Var[∇ℓ(θ∣x)] = Var[S(θ)]
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5 Proofs of Asymptotic Properties of MLE
In this section, we want to prove the asymptotic properties of the MLE: consistency, normality, and e�ciency.

We �rst introduce some notation. Let Xn = X1 , ..., Xn be our random sample, where the X i ’s are iid. Let θ̂MLE be the maximum
likelihood estimator for the parameter θ. θ0 is the true underlying value of the parameter. Note that θ̂MLE , θ0 , θ ∈ Ω (the
parameter space).

Furthermore, to prove the asymptotic properties of the maximum likelihood estimator, we will introduce several regularity
conditions:

• �e parameter space must be a bounded and closed set.�at is, Ω must be a compact subset.

• �e true value of the parameter, θ0, must be an interior point of the parameter set: θ0 ∈ int(Ω). Phrased di�erently, θ0
cannot be on the boundary of the set.

• �e likelihood function is continuous in θ.

• �e likelihood function is twice-di�erentiable in the neighborhood of θ0.

• Integration and di�erentiation is interchangeable (as we de�ned above for the derivation of expected Fisher information).

5.1 Consistency of MLE

We want to show that the MLE (θ̂MLE) converges in probability to the true value of the parameter (θ0):

θ̂MLE

p
→ θ0

Since the observations in our sample are iid, we canwrite the log-likelihood as the sumof log-likelihoods for each observation x i :

ℓ(θ∣x) =
n

∑
i=1

ℓ(θ∣x i)

Let’s divide by n, which we can do since it doesn’t a�ect the maximization of the log-likelihood. Now, we have an expression
that looks like the average of log-likelihoods across all the Xs. We can then show by the strong law of large numbers that that
converges to the expected value of a log-likelihood of a single X:

1
n

n

∑
i=1

ℓ(θ∣x i)
a .s .→ Eθ0 ℓ(θ∣x) = Eθ0 log f (x∣θ)

In this expression, Eθ0 represents the expectation of the density with respect to the true unknown parameter and thus we de�ne
a new function L(θ), which is the expected log-likelihood function:

L(θ) = Eθ0 log f (x∣θ) =
∞

∫
−∞

log f (x∣θ) ⋅ f (x∣θ0)∂x

As a result, the normalized log-likelihood converges to the expected log-likelihood function L(θ) for any value of θ.�is ex-
pression depends solely on θ and not on x since we integrate it out.
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Now, let’s look at the divergence between L(θ) and L(θ0) (the expected log-likelihood function evaluated at an arbitrary
parameter θ and the true parameter θ0):

L(θ) −L(θ0) = Eθ0[log f (x∣θ) − log f (x∣θ0)] = Eθ0[ log
f (x∣θ)
f (x∣θ0)

]

By Jensen’s inequality:

Eθ0[ log
f (x∣θ)
f (x∣θ0)

] ≤ logEθ0[
f (x∣θ)
f (x∣θ0)

] = log
∞

∫
−∞

f (x∣θ)
f (x∣θ0)

⋅ f (x∣θ0)dx = log
∞

∫
−∞

f (x∣θ)dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1 by def. of pdf

= 0

�us:

L(θ) −L(θ0) ≤ 0

L(θ) ≤ L(θ0)

�is inequality suggests that the expected log-likelihood when assuming that an arbitrary parameter θ is governing the data
generation process is no greater than the expected log-likelihood when you correctly identify the true parameter θ0 governing
the data generation process. Note that this is closely related to the concept of the Kullback-Leibler divergence. In fact, we know
from Gibbs’ inequality that the Kullback-Leibler divergence between f (x∣θ0) and f (x∣θ)must be non-negative:

DKL( f (x∣θ0)∣∣ f (x∣θ)) = Eθ0[ log
f (x∣θ0)
f (x∣θ)

] ≥ 0

In more practical terms, this inequality suggests that no distribution describes the data as well as the true distribution that gen-
erated it.�erefore, on average, the greatest log-likelihood will be the one that is a function of the true parameter θ0. Phrased
di�erently, θ0 is the maximizer of the expected log-likelihood, L(θ).

Now, let’s put the di�erent pieces together. Recall that by the strong law of large numbers:

1
n

n

∑
i=1

ℓ(θ∣x i)
a .s .→ Eθ0 log f (x∣θ)

For a �nite parameter space Ω, the following holds for the MLE (convergence is uniform from the uniform strong law of large
numbers):

θ̂MLE = sup
θ∈Ω

1
n

n

∑
i=1

ℓ(θ∣x i)
a .s .→ sup

θ∈Ω
Eθ0 log f (x∣θ) = θ0

∴θ̂MLE
a .s .→ θ0

In sum, by the strong law of large numbers, the MLE is actually maximizing the expected log-likelihood as n increases asymp-
totically. But we showed that the expected log-likelihood is maximized at the true value of the parameter.�erefore, as n →∞,
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the normalized log-likelihood of the data should approach the expected value of the log-likelihood of the random variable X.
Another way of stating the consistency of the MLE is that it minimizes the Kullback-Leibler divergence between an arbitrary
log-likelihood function and the true log-likelihood. If θ̂MLE = θ0, the Kullback-Leibler divergence goes to 0 (by LLN).

Note also that the consistency of the MLE can also be proven for an in�nite parameter space Ω as well as for non-compact
parameter spaces.

5.2 Asymptotic Normality of MLE

We want to prove that the MLE, θ̂MLE , is asymptotically normal:

√
n(θ̂MLE − θ0)

d→ N (0, (In)−1)

Ultimately, we want to rely on the fact that the score (�rst derivative of the log-likelihood) is a sum of iid terms, and as a result
we know that its asymptotic distribution can be approximated using the law of large numbers and the central limit theorem.
We can start the proof by noting that since the MLE maximizes the log-likelihood, the score is equal to zero at the MLE:

S(θ̂MLE) = ℓ′(θ̂MLE ∣x) = 0

When the log-likelihood is twice di�erentiable, we can expand the score around the true parameter value θ0 using a Taylor
series approximation of the 1st order:

S(θ) = ℓ′(θ) = ℓ′(θ0) + ℓ′′(θ̃)(θ − θ0),

where θ̃ is some point between θ and θ0. More precisely:

θ̃ = αθ + (1 − α)θ0, where α ∈ [0, 1]

Now we can plug the MLE in for θ and since we know that the score at evaluated at the MLE is 0, the expression simpli�es to:

ℓ′(θ̂MLE) = 0 = ℓ′(θ0) + ℓ′′(θ̃)(θ̂MLE − θ0)

Note that in this case, θ̃ is an arbitrary point located between the MLE (θ̂MLE) and the true parameter (θ0). One could also
obtain this equation by utilizing the mean-value theorem which suggests that for a continuous function f (x) there is a point c
on the interval [a, b] such that:

f ′(c) = f (b) − f (a)
b − a

Applying the mean value theorem to the function ℓ′(θ) and letting a = θ̂MLE and b = θ0:

23



ℓ′′(θ̃) = ℓ′(θ̂MLE) − ℓ′(θ0)
θ̂MLE − θ0

,where θ̃ ∈ [θ̂MLE , θ0]

ℓ′′(θ̃)(θ̂MLE − θ0) + ℓ′(θ0) = ℓ′(θ̂MLE) = 0, θ̃ ∈ [θ̂MLE , θ0]

In either case, we obtain the following relationship:

θ̂MLE − θ0 = −
ℓ′(θ0)
ℓ′′(θ̃)

Multiplying both sides by
√
n:

√
n(θ̂MLE − θ0) = −

√
nℓ′(θ0)
ℓ′′(θ̃)

Let’s consider the asymptotic distribution of the numerator and denominator in turn, starting with the asymptotic distribution
of the numerator. We can �rst express the numerator as a sum of iid scores (�rst derivatives of the log-likelihood of iid random
variables):

ℓ′(θ0) =
n

∑
i=1

ℓ′(θ0∣x i)

Using the Central Limit�eorem, we will be able to make a statement regarding the asymptotic distribution of the average of
the score, 1

n
ℓ′(θ0). First, though, note that in the section on Fisher information above, we proved that the �rst moment of the

score is zero and the second moment of the score is the expected sample Fisher information:

Eθ[ℓ′(θ∣x)] = 0

and

Varθ[ℓ′(θ∣x)] = −Eθ[ℓ′′(θ∣x)] = In(θ)

For a single observation, the �rst moment is 0 and the secondmoment is I1(θ). Invoking the Central Limit�eorem, we know
that the mean of the score is distributed as a normal with a mean of 0 and a variance of I1(θ)/n.

1
n
ℓ′(θ) dÐ→ N (0, I1(θ)

n
)

�is implies that ℓ′(θ) is distributed as a normal with a mean of 0 and a variance of In(θ):

ℓ′(θ) dÐ→ N (0, In(θ))

Multiplying this by
√
n to get the expression in the numerator:
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√
nℓ′(θ) dÐ→ N (0, n ⋅ In(θ))

Now, we can �nd the asymptotic behavior of the denominator – ℓ′′(θ̃∣x) – in the Taylor series expansion of the score. We
can use the law of large numbers to derive the following convergence in probability for any θ:

1
n
ℓ′′(θ̃∣x) = 1

n

n

∑
i=1

ℓ′′(θ̃∣x i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

E[ℓ′′(θ̃ ∣x i)]=−I1(θ̃)

p
Ð→ −I1(θ̃)

Moreover, since we know from the consistency of the MLE that θ̂MLE
a .s→ θ0 and θ̃ ∈ [θ̂MLE , θ0], it follows that θ̃

a .s→ θ0.�ere-
fore:

ℓ′′n(θ̃) a .sÐ→ −In(θ0)

Combining the asymptotic behavior of the numerator and denominator:

√
n(θ̂MLE − θ0) = −

√
nℓ′(θ0)
ℓ′′(θ̃)

dÐ→ N (0, n ⋅ In(θ0)
(−In(θ0))2

) = N (0, n

In(θ0)
)

In sum, we have shown:
θ̂MLE ∼ N (θ0 ,

1
In(θ0)

)

5.2.1 E�ciency of MLE

To show the e�ciency of the MLE we need to show that the variance of the MLE is equal to the Cramer-Rao lower bound.
However, we know that the Cramer-Rao lower bound is just the inverse of the Fisher information, I(θ).

Since Var(θ̂MLE) = I(θ)−1 = − 1

E[∂
2ℓ(θ∣x)
∂θ2

]
, the e�ciency of the MLE is:

e(θ̂MLE) =
I(θ)−1

Var(θ̂MLE)
= 1

∴ θ̂MLE is an e�cient estimator.

25



Figure 5: Illustration of Central Limit�eorem for the MLE and the score evaluated at the true parameter. For this illustration,
we simulated 1000 datasets of sample size n ∈ {10, 25, 100} from the Bern(0.3) distribution. For each dataset, we plotted the
score function (as a function of θ) and theMLE.We also evaluated the score function at the true value of the parameter, θ0 = 0.3.
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(a)�e top plot portrays the 1000 score functions for simulated
data with sample size n = 10. �e MLEs are indicated with or-
ange dots. �e lower plot depicts the density function of the
MLEs across the 1000 datasets. Note that the density of the
MLEs does not yet look particularly normal.
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(b) A density plot of the score function evaluated at the true pa-
rameter, θ0 , across 1000 simulated datasets of sample size n = 10
(in black). For comparison in red, we have plotted the theoret-
ical asymptotic density of the score,N (0, In(θ0)), derived us-
ing the CLT. Clearly the simulated density has not converged to
the normal density.
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(c)�e top plot portrays the 1000 score functions for simulated
data with sample size n = 25. �e MLEs are indicated with or-
ange dots. �e lower plot depicts the density function of the
MLEs across the 1000 datasets.
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(d) A density plot of the score function evaluated at the true pa-
rameter, θ0 , across 1000 simulated datasets of sample size n = 25
(in black). For comparison in red, we have plotted the theoret-
ical asymptotic density of the score,N (0, In(θ0)), derived us-
ing the CLT.�e simulated density is starting to converge to the
expected normal density.
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(a)�e top plot portrays the 1000 score functions for simulated
data with sample size n = 100. �e MLEs are indicated with
orange dots. �e lower plot depicts the density function of the
MLEs across the 1000 datasets. �e MLE has essentially con-
verged to the expected distribution.
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(b) A density plot of the score function evaluated at the true
parameter, θ0 , across 1000 simulated datasets of sample size
n = 100 (in black). For comparison in red, we have plotted the
theoretical asymptotic density of the score, N (0, In(θ0)). As
predicted by the CLT, the distribution of the scores has essen-
tially converged to the expected density.
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Convergence of Random Variables
What does it mean to say that a sequence converges?�ere are several notions of convergence for random variables. �e two
main ones are convergence in probability and convergence in distribution.

Convergence in Probability
Suppose we have a sequence of random variables denoted by {Xn} = X1 , X2 , ..., Xn . �e sequence converges in probability to
X if the probability distribution of the sequence {Xn} is increasingly concentrated around X:

lim
n→∞

P(∣Xn − X∣ < є) = 1
or
lim
n→∞

P(∣Xn − X∣ ≥ є) = 0

for every є > 0.

Convergence in probability is denoted as Xn

p
→ X.

Note that convergence in probability implies convergence in distribution, but convergence in distribution implies convergence
in probability only when the limiting variable X is a constant.

We can extend convergence in probability to the multivariate case. If Xn

p
→ X and Yn

p
→ X, then (Xn ,Yn)

p
→ (X ,Y).

Almost Sure Convergence
Suppose we have a sequence of random variables denoted by {Xn} = X1 , X2 , ..., Xn . �e sequence converges almost surely to
X if:

lim
n→∞

P (sup
m≥n

∣Xm − X∣ ≥ є) = 0 for every є > 0.

Almost sure convergence is denoted as Xn
a .s .→ X.

Note that almost sure convergence implies convergence in probability, but not vice versa.

Convergence in Distribution
Suppose we have a sequence of random variables denoted by {Xn} = X1 , X2 , ..., Xn . Let Fn denote the CDF of random variable
Xn and F∗ denote the CDF of random variable X∗.

�e sequence converges in distribution to a random variable X if:

lim
n→∞

Fn(x) = F∗(x) for every number x ∈ R where F∗ is continuous

Intuitively, convergence in distribution means that if n is su�ciently large, the probability for Xn to be in a given range is
approximately equal to the probability that X∗ is in the same range.
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Convergence in probability is denoted as Xn
d→ X∗. X∗ is the asymptotic distribution of Xn .

We can extend convergence in distribution to the multivariate case. If Xn
d→ X and Yn

d→ c (where c is a constant), then
(Xn ,Yn)

p
→ (X , c).

Levy’s Continuity�eorem

Levy’s continuity theorem equates converges in distribution of a sequence of random variables to the pointwise converges of a
sequence of corresponding characteristic functions.

Let X1 , X2 , ..., Xn be a sequence of n random varaibles. Let Fn be the CDF of Xn and let ξn be the characteristic function
of Xn , given by ξn(t) = E(e i tXn) ∀t ∈ R . Let F∗ denote the CDF and ξ∗ denote the characteristic function of random variable
X∗.

�e sequence X1 , X2 , ..., Xn converges in distribution to X∗ if:
lim
n→∞

ξn(t) = ξ∗(t) ∀t ∈ R

Convergence of Moment Generating Functions:
Levy’s continuity theorem is a more general version of the following statement: a convergence of moment generating functions
(MGFs) to one MGF is equivalent to the convergence in distribution of a sequence of random variables (and their CDFs) to
one random variable (and its CDF).

Let X1 , X2 , ..., Xn be a sequence of n random varaibles. Let Fn be the CDF of Xn and let ψn be the moment generating function
(MGF) of Xn , given by ψn(t) = E(e tXn) ∀t ∈ R . As before, let F∗ denote the CDF and ψ∗ denote the MGF of random variable
X∗. Assume that both MGFs exist.

�en, the sequence X1 , X2 , ..., Xn converges in distribution to X∗ if:
lim
n→∞

ψn(t) = ψ∗(t) for all values of t in the neighborhood around t = 0

Law of Large Numbers
�is theorem describes the behavior of the sample mean of a large number of random variables. �e Law of Large Numbers
states that the mean of a sequence of iid random variables converges to the expected value of the random variables. Another
way of stating this is that the sample mean converges to the population mean. �is means that if the sample size is large, the
probability that the sample mean is near the true population mean is large. Mathematically:

X̄n

p
→ µ

Proof of Weak Law of Large Numbers
Let X1 , X2 , ..., Xn be a sequence of identically and independently distributed random variables where E[X i] = µ and Var[X i] =
σ 2.
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Recall that Chebyshev’s inequality indicates that for any random variable X:

P(∣X − µ∣ > є) ≤ σ 2

є2

However, what if we want to know the behavior of 1
n
X̄?

First, �nd the expected value and the variance of the mean of the sequence:
E[X̄] = µ

Var[X̄] = 1
n

σ 2

�en, due to Chebyshev’s inequality, for every number є > 0:

P(∣X̄n − µ∣ > є) ≤ σ 2

nє2

�is is identical to:
P(∣X̄n − µ∣ < є) ≥ 1 − σ 2

nє2

Note that as n →∞:
P(∣X̄n − µ∣ < є) = 1 or P(∣X̄n − µ∣ > є) = 0

∴X̄n

p
→ µ

Strong Law of Large Numbers
�e strong law of large numbers states that the sample mean almost sure converges to the true population mean:

X̄n
a .s .→ µ

Moreover, we can generalize the strong law of large numbers to any function of x. Let X1 , X2 , ..., Xn be iid random variables.
�en assume that f (x , θ) is a continuous function of x de�ned for all θ ∈ Ω.�e strong law of large numbers states:

1
n

n

∑
i=1

f (X i , θ)
a .s .Ð→ E[ f (X , θ)]

Uniform Strong Law of Large Numbers
�e uniform strong law of large numbers states necessary conditions for almost sure convergence to be uniform across the
parameter space Ω.

�e uniform strong law of large numbers states:

supθ∈Ω ∣ 1
n

n

∑
i=1

f (X i , θ) − E[ f (X , θ)]∣
a .s .Ð→ 0

�e conditions that need to hold for the uniform strong law of large numbers to apply to a random variable X and a func-
tion f (x , θ) are:

• Ω must be a compact parameter space
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• f (x , θ) should be semi-continuous in θ ∈ Ω for all x

• �ere must be a function K(x) where E[K(x)] ≤∞ and ∣ f (x , θ)∣ ≤ K(x) ∀x , θ

Central Limit�eorem
�e central limit theorem (CLT) states gives the conditions under which a mean of independently and identically distributed
random variables will converge to a normal distribution. Speci�cally, the theorem states that when a random sample of size n is
taken from any distribution characterized by a mean of µ and a variance of σ 2 <∞, then the sample mean X̄n has a distribution
that is approximately normal with mean µ and variance σ 2/n. An equivalent statement is that for a large random sample, the
distribution of

√
n(X̄n−µ)/σ is approximated by the standard normal distribution.�e approximation improves as n increases

(this is a convergence in distribution).�is approximation holds whether the original distribution is continuous or discrete.

More rigorously:
Let X1 , ..., Xn form a random sample of size n from a distribution with mean µ and variance σ 2.�en for each �xed number x:

lim
n→∞

P[
√
n(X̄n − µ)

σ
≤ x] = Φ(x)

In a sense, the CLT governs the shape of convergence of X̄n to µ, which we proved using the law of large numbers. �e CLT
indicates that the limit as n goes to in�nity of X̄n − µ is non-degenerate when the exponent on the n is 12 and that the limiting
distribution is normal.

Proof of Central Limit�eorem
Suppose X1 , X2 , ..., Xn are iid random variables with mean µ and variance σ 2. We want to prove that as n increases, X̄n ∼

N (µ, σ 2

n
). We will assume that X has a a moment generating function (MGF).�us, we will use MGFs to prove that the cen-

tral limit theorem holds. Even if the MGF does not exist, characteristic functions (which do always exist) may be used to prove
that the CLT still holds. Note that the MGF of the standard normal distribution is given by ψ∗(t) = e

1
2 t
2
.

We begin with the random variable Zn =
√
n(X̄n − µ)/σ , which converges in distribution to the standard normal.

Using some simple algebra:

Zn =
√
n(X̄n − µ)

σ
=

√
n(

n

∑
i=1

(X i/n) − µ)

σ
=

√
n ⋅ 1

n
(

n

∑
i=1

(X i − µ))

σ
=

n

∑
i=1

(X i − µ)
√
nσ

= 1√
n

n

∑
i=1

(X i − µ)
σ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Yi

Let ψ(t) denote the MGF of the random variable Yi . �en, since the sum of independent random variables is the product

of their MGFs, the MGF of
n

∑
i=1

Yi is (ψ(t))n . When we multiply the MGF by 1
√
n
, we get that the MGF of the standardized sum

of random variables, Zn , is:

ψn(t) = (ψ( t√
n
))n

We can express the MGF of the standardized sum of random variables using a Taylor series expansion around the point t = 0.
�is enables us to incorporate the information that the �rst moment of the standardized RV is 0 and the second moment is 1:
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First moment: E(Yi) = ψ′(0) = 0

Second moment: E(Y 2i ) = ψ′′(0) = 1 (since Var(Yi) = 1)

�e Taylor series expansion of ψ(t) around t = 0 (hence Maclaurin series) is:

ψ(t) ≈ ψ(0) + tψ′(0) + t2

2!
ψ′′(0) + t3

3!
ψ′′′(0) + ... = ψ(0) + tψ′(0) + t2

2!
ψ′′(t∗) = 1 + t2

2
ψ′′(t∗) for 0 < t∗ < t

Note instead of writing an in�nite series, I wrote the the �rst 2 terms of the series and then used a Lagrange remainder.

�is means that the Taylor series expansion of ψn(t) is simply:

ψn(t) ≈ [1 + t2

2n
ψ′′(t∗)]n for 0 < t∗ < t

√
n

Now we can �nd the limit of ψn(t) as n →∞. Note that as n →∞, t∗ → 0 because t
√
n
→ 0.

Replacing t∗ with 0 yields ψ"(0) = 1. Taking the limit:

lim
n→∞

[1 + t2

2n
]n

�is now looks like a case of a notable limit from calculus, given in its general form by:

lim
x→∞

[1 + k

x
]x = ek

∴ lim
n→∞

ψn(t) = lim
n→∞

[1 + t2/2
n

]n = e t
2
/2 = ψ∗(t)

We have just proven that the MGF of the standardized sequence of any random variables converges to the MGF of the standard
normal distribution.�erefore, the CDF of the standardized sequence of the random variables converges in distribution to the
standard normal distribution.

∴Zn
d→ Z ∼ N(0, 1)

Continuous Mapping�eorem
�e continuous mapping theorem states that if one has a sequence of random variables that converges, a continuous function
that maps the convergent sequence to another sequence will also yield a convergent sequence.

More technically:
De�ne X to be a random variable on metric space S. Xn represents a sequence of n random variables X.�e continuous func-
tion g(⋅) then maps S → S′.

�e continuous mapping theorem indicates that the following hold (assuming g(⋅) is continuous at X):

• Xn
d→ X ⇒ g(Xn)

d→ g(X)

• Xn

p
→ X ⇒ g(Xn)

p
→ g(X)
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• Xn
a .s .→ X ⇒ g(Xn)

a .s .→ g(X)

Furthermore, one can show that if Xn

p
→ a and Yn

p
→ b, then g(Xn ,Yn)

p
→ g(a, b) (assuming that g(⋅) is continuous at a, b).

Slutsky’s�eorem

Suppose that we have two sets of sequences: {Xn} and {Yn}. Furthermore, suppose that Xn
d→ X and Yn

p
→ c.

Slutsky’s theorem indicates that the following relationships hold between convergent sequences:

• Xn + Yn
d→ X + c

• Yn ⋅ Xn
d→ cX

•
Xn

Yn

d→ X

c
(c ≠ 0)

Proof: �e proof of Slutsky’s theorem is quite simple - in e�ect, the theorem is just a particular application of the continuous
mapping theorem. We know that since Xn

d→ X and Yn

p
→ c, the joint vector (Xn ,Yn)

d→ (X , c). Now, using the multivariate
version of the continuous mapping theorem, we respectively let g(x , y) = x + y, g(x , y) = xy, and g(x , y) = x

y
.
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