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1 Front-door and Back-door Adjustment

For an outcome Y and a treatment/action A, we deĕne the potential outcome under a generic treat-

ment as Y(a1) and the potential outcome under control as Y(a0). e ATE is deĕned as E[Y(a1)]−

E[Y(a0)]. In what follows we discuss the large sample bias in estimating E[Y(a0)] and the large sam-

ple bias in the ATE.

1.1 Large Sample Bias in Estimating E[Y(a0)]

We assume that E[Y(a0)] is identiĕable by conditioning on observed covariates X and unobserved

covariates U. For simplicity in presentation we assume that X and U are discrete, such that

μ0 = E[Y(a0)] =
∑
x

∑
u

E[Y|a0, x, u] · P(u|x) · P(x), (1)
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but continuous variables can be easily accommodated. However, the form of this equation repre-

sents a non-trivial assumption, even with only discrete variables, because it requires that positivity

holds such that the conditional distributions are well deĕned.

If we have measured a set of post-treatment variablesM, the front-door adjustment can be writ-

ten as the following:

μfd0 =
∑
x

∑
m

P(m|a0, x)
∑
a

E[Y|a,m, x] · P(a|x) · P(x), (2)

and the large-sample bias in the front-door estimate of E[Y(a0)] can be written as the following (see
Appendix A.1 for a proof):

Bfd
0 = μfd0 − μ0

=
∑
x

P(x)
∑
m

∑
u

P(m|a0, x)
∑
a

E[Y|a,m, x, u] · P(u|a,m, x) · P(a|x)

−
∑
x

P(x)
∑
m

∑
u

P(m|a0, x, u) · E[Y|a0,m, x, u] · P(u|x)

(3)

Note that the bias will be zero when Y is mean independent of A conditional onM, X, and U such

that E[Y|a,m, x, u] = E[Y|a0,m, x, u] for all a, and when U is independent of M conditional on

A and X such that P(m|a0, x) = P(m|a0, x, u) and
∑

a P(u|a,m, x) · P(a|x) = P(u|x). e result

for μ1 is analogous. erefore, as demonstrated in Pearl (1995), it is possible for the front-door

approach to provide an unbiased estimator of ATE, even when there is an unmeasured confounder.

However, note that unlike the presentation in Pearl (1995, 2000, 2009), the presentation here does

not require the deĕnition of potential outcomes beyond those originally used to deĕne the ATE. In

other words, this presentation is agnostic as to whether causal effects are well deĕned for theM, X,

and U variables.
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1.2 Large Sample Bias in Estimating ATE

e front-door estimate of the ATE can be written as:

μfd1 − μfd0 =
∑
x

P(x)
∑
m

[P(m|a1, x)− P(m|a0, x)]
∑
a

E[Y|a,m, x] · P(a|x), (4)

with the bias written as the following (see proof in Appendix A.1):

BfdATE = μfd1 − μfd0 − (μ1 − μ0)

=
∑
x

P(x)
∑
m

[P(m|a1, x)− P(m|a0, x)]
∑
a

∑
u

E[Y|a,m, x, u] · P(u|a,m, x) · P(a|x)

−
∑
x

P(x)
∑
u

∑
m
{[P(m|a1, x, u)− P(m|a0, x, u)]E[Y|a1,m, x, u]} P(u|x)

−
∑
x

P(x)
∑
u

∑
m
{[E[Y|a1,m, x, u]− E[Y|a0,m, x, u]]P(m|a0, x, u)} P(u|x)

(5)

Note that the last line is zero when the Y is mean independent of A conditional on M, X, and U,

so when we also have that U is independent ofM conditional on A and X, Bfd
ATE can be shown to be

zero similarly to Bfd
0 .

In order to compare the bias in the front-door estimate to the standard back-door estimate, we

will write the back-door estimate of ATE based on the observed covariates as the following:

μbd1 − μbd0 =
∑
x

P(x)[E[Y|a1, x]− E[Y|a0, x]], (6)

and the large sample bias of the back-door estimate as the following (see Appendix A.2 for a proof),

which is very similar to the formula presented in VanderWeele and Arah (2011):

BbdATE = μbd1 − μbd0 − (μ1 − μ0)

=
∑
x

P(x)
∑
u
{[P(u|a1, x)− P(u|x)] · [E[Y|a1, x, u]− E[Y|a0, x, u]]}

−
∑
x

P(x)
∑
u
{[P(u|a1, x)− P(u|a0, x)] · [E[Y|a0, x, u]}

(7)

3



ere are two important general facts to note about the comparison between Bfd
ATE and Bbd

ATE. First,

it is quite possible that the front-door ATE bias will be smaller than the back-door ATE bias even

when the aforementioned front-door independence conditions donot hold exactly. Second, because

both estimators are deĕned within levels of the observed covariates X, it is possible to form hybrid

estimators that utilize the front-door estimate for some values of X and the back-door estimate for

other values of X. In order to develop some intuition about when the front-door estimate would be

preferred to the back-door estimator (perhaps within a level of X), we next consider the special case

of linear Structural Equation Models with constant effects (SEMs) and a scalarM.

2 Special Case: Linear Structural Equation Models

If we assume additive linear models with constant effects for Y andM, then:

E[Y|a,m, x]− E[Y|a,m′, x] = κ(m−m′), (8)

which is constant in a and x, and:

E[M|a1, x]− E[M|a0, x] = λ(a1 − a0), (9)

which is constant in x. is allows us to write the front-door ATE as the following (proof in Ap-

pendix B.1):

μfd1 − μfd0 = κλ(a1 − a0) (10)

erefore, when we assume additive linear models, the front-door estimate for ATE simpliĕes to a

product of multiple regression coefficients. If we also assume that Y is an additive linear model in
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Figure 1: SEM

a, x, and u, then E[Y|a1, x, u]− E[Y|a0, x, u] = τ(a1 − a0) and the ATE simpliĕes as well:

μ1 − μ0 =
∑
x

∑
u

τ(a1 − a0) · P(u|x) · P(x)

= τ(a1 − a0)
(11)

In order to present the ATE bias in the front-door approach, it will be helpful to present a simpliĕed

linear structural equationmodel with constant effects for these variables. is is deĕned by the path

diagram in Figure 1. For simplicity in presentation, independent error terms have been removed

from the graph, we have assumed that there are no measured conditioning variables, and we have

assumed that A,M, U, and Y are scalars. Note that when a1 − a0 = 1, the ATE τ can be written as

the following for this model:

τ = αβ + γ (12)

When a1 − a0 = 1, the front-door estimand is the following (see Appendix B.1):

μfd1 − μfd0 = αβ + αθe V(U|A)
V(M|A)

+ βeδV(U)
V(A)

+ e2δθV(U)
V(A)

V(U|A)
V(M|A)

(13)
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and the difference between the front-door estimand and the ATE is the following:

Bfd
ATE = αθe V(U|A)

V(M|A)
+ βeδV(U)

V(A)
+ e2δθV(U)

V(A)
V(U|A)
V(M|A)

− γ (14)

erefore, the front-door estimand will equal the ATE when the ĕrst three terms equal γ. In other

words, when the bias in the estimate of the indirect effect equals the direct effect. A special case of

this is the situation when e = 0 and γ = 0, and this can itself be seen as an example of the front-door

criterion within the context of SEMs.

For comparison, the back-door estimand and bias can be written as the following (see Ap-

pendix B.2):

μbd1 − μbd0 = αβ + γ + (βeδ + θδ)V(U)
V(A)

(15)

Bbd
ATE = (βeδ + θδ)V(U)

V(A)
(16)

When comparing the back-door and front-door bias within SEMs, we ĕrst notice that both share

the βeδ V(U)
V(A) terms. is represents the A← U→ M→ Y path. e key comparison is between the

bias terms unique to the front-door estimand (αθe V(U|A)
V(M|A) + e2δθV(U)

V(A)
V(U|A)
V(M|A) − γ) and the bias term

unique to the back-door estimand (θδ V(U)
V(A) ). Roughly speaking, the front-door bias can be smaller

than the back-door bias when e and γ are small or when the front-door bias terms cancel. Notice as

well that the front-door and back-door bias will be equal when θ = 0 and γ = 0, which is equivalent

to saying that there is no direct effect from A to Y or from U to Y. erefore, another general case

where the front-door will be preferred to the back-door is whenU is largely mediated byM, and the

bias from the common term is ameliorated by the direct effect (βeδ V(U)
V(A) − γ).
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A Large-Sample Bias Proofs

A.1 Front-door Bias

e large-sample bias in the front-door estimate of E[Y(a0)] can be derived as the following:

Bfd
0 = μfd0 − μ0

=
∑
x

∑
m

P(m|a0, x)
∑
a

E[Y|a,m, x] · P(a|x) · P(x)−
∑
x

∑
u

E[Y|a0, x, u] · P(u|x) · P(x)

=
∑
x

∑
m

P(m|a0, x)
∑
a

∑
u

E[Y|a,m, x, u] · P(u|a,m, x) · P(a|x) · P(x)

−
∑
x

∑
u

∑
m

E[Y|a0,m, x, u] · P(m|a0, x, u) · P(u|x) · P(x)

=
∑
x

P(x)
∑
m

∑
u

P(m|a0, x)
∑
a

E[Y|a,m, x, u] · P(u|a,m, x) · P(a|x)

−
∑
x

P(x)
∑
m

∑
u

P(m|a0, x, u) · E[Y|a0,m, x, u] · P(u|x)

(17)
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e large-sample bias in the front-door estimate of ATE can be derived as the following:

BfdATE = μfd1 − μfd0 − (μ1 − μ0)

=
∑
x

P(x)
∑
m

[P(m|a1, x)− P(m|a0, x)]
∑
a

E[Y|a,m, x] · P(a|x)

−
∑
x

P(x)
∑
u
{E[Y|a1, x, u]− E[Y|a0, x, u]} · P(u|x)

=
∑
x

P(x)
∑
m

[P(m|a1, x)− P(m|a0, x)]
∑
a

∑
u

E[Y|a,m, x, u] · P(u|a,m, x) · P(a|x)

−
∑
x

P(x)
∑
u

∑
m
{E[Y|a1,m, x, u] · P(m|a1, x, u)− E[Y|a0,m, x, u] · P(m|a0, x, u)} · P(u|x)

+
∑
x

P(x)
∑
u

∑
m

P(m|a0, x, u) · E[Y|a1,m, x, u]−
∑
x

P(x)
∑
u

∑
m

P(m|a0, x, u) · E[Y|a1,m, x, u]

=
∑
x

P(x)
∑
m

[P(m|a1, x)− P(m|a0, x)]
∑
a

∑
u

E[Y|a,m, x, u] · P(u|a,m, x) · P(a|x)

−
∑
x

P(x)
∑
u

∑
m

[P(m|a1, x, u)− P(m|a0, x, u)] · E[Y|a1,m, x, u] · P(u|x)

−
∑
x

P(x)
∑
u

∑
m
{E[Y|a1,m, x, u]− E[Y|a0,m, x, u]} · P(m|a0, x, u) · P(u|x)

(18)

A.2 Back-door Bias

e back-door estimate of ATE based on the observed covariates is the following:

μbd1 − μbd0 =
∑
x

P(x) · {E[Y|a1, x]− E[Y|a0, x]},
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and the large sample bias of the back-door estimate is the following:

BbdATE = μbd1 − μbd0 − (μ1 − μ0)

=
∑
x

P(x) · {E[Y|a1, x]− E[Y|a0, x]}

−
∑
x

P(x)
∑
u
{E[Y|a1, x, u]− E[Y|a0, x, u]} · P(u|x)

=
∑
x

P(x)
∑
u
{E[Y|a1, x, u] · P(u|a1, x)− E[Y|a0, x, u] · P(u|a0, x)}

−
∑
x

P(x)
∑
u
[E[Y|a1, x, u]− E[Y|a0, x, u]] · P(u|x)

Adding and subtracting
∑

x P(x)
∑

u P(u|a1, x) · E[Y|ao, x, u]:

=
∑
x

P(x)
∑
u
{E[Y|a1, x, u]− E[Y|a0, x, u]} · P(u|a1, x)

−
∑
x

P(x)
∑
u
[E[Y|a0, x, u] · [P(u|a1, x)− P(u|a0, x)]

−
∑
x

P(x)
∑
u
{E[Y|a1, x, u]− E[Y|a0, x, u]} · P(u|x)

=
∑
x

P(x)
∑
u
{E[Y|a1, x, u]− E[Y|a0, x, u]} · [P(u|a1, x)− P(u|x)]

−
∑
x

P(x)
∑
u

E[Y|a0, x, u] · [P(u|a1, x)− P(u|a0, x)]

(19)

B Linear SEM Proofs

B.1 Front-door Estimand

When writing the front-door estimate for ATE within linear SEMs, note that
∑

m[P(m|a1, x) −

P(m|a0, x)] = 0, so ifwe choose a reference value ofm′, thenwe can include the quantity−
∑

a E[Y|a,m′, x]·
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P(a|x) · P(x) which is constant inm. If we further assume additive linear models for Y andM, then

E[Y|a,m, x]−E[Y|a,m′, x] = κ(m−m′), which is constant in a and x, and E[M|a1, x]−E[M|a0, x] =

λ(a1 − a0) which is constant in x.

μfd1 − μfd0 =
∑
x

P(x)
∑
m

[P(m|a1, x)− P(m|a0, x)]
∑
a

E[Y|a,m, x] · P(a|x)

=
∑
x

P(x)
∑
m

[P(m|a1, x)− P(m|a0, x)]
∑
a
{E[Y|a,m, x]− E[Y|a,m′, x]} · P(a|x)

=
∑
x

P(x)
∑
m

[P(m|a1, x)− P(m|a0, x)]
∑
a

κ(m−m′) · P(a|x)

=
∑
x

P(x)
∑
m

[P(m|a1, x)− P(m|a0, x)]κ(m−m′)

=
∑
x

P(x)
∑
m

[P(m|a1, x)− P(m|a0, x)]κm

=
∑
x

P(x)κ
∑
m

[mP(m|a1, x)−mP(m|a0, x)]

=
∑
x

P(x)κ{E[M|a1, x]− E[M|a0, x]}

=
∑
x

P(x)κλ(a1 − a0)

= κλ(a1 − a0)

(20)

erefore, when we assume additive linear models, the front-door estimate for ATE simpliĕes to a

product of multiple regression coefficients. If we also assume that Y is an additive linear model in

a, x, and u, then E[Y|a1, x, u]− E[Y|a0, x, u] = τ(a1 − a0) and the ATE simpliĕes as well.

We can express κ and λ in terms of covariances:

κ =
Cov(Y,M|A)
V(M|A)

= β + θe V(U|A)
V(M|A)

(21)
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λ =
Cov(M,A)

V(A)

= α + eδV(U)
V(A)

(22)

Within the linear SEM the following covariance relationships hold (we omit uncorrelated errors in

these expressions as is typically done with SEM graphs since they do not affect the derivations):

Cov(Y,M|A) = Cov(βM+ γA+ θU,M|A)

= βCov(M,M|A) + θCov(U,M|A)

= βV(M|A) + θCov(U, αA+ eU|A)

= βV(M|A) + θeV(U|A)

(23)

Cov(M,A) = Cov(αA+ eU,A)

= αV(A) + eCov(U,A)

= αV(A) + eCov(U, δU)

= αV(A) + eδV(U)

(24)

erefore, when a1 − a0 = 1, the front-door estimand is

μfd1 − μfd0 = λκ = (α + eδV(U)
V(A)

)(β + θe V(U|A)
V(M|A)

)

= αβ + αθe V(U|A)
V(M|A)

+ βeδV(U)
V(A)

+ e2δθV(U)
V(A)

V(U|A)
V(M|A)

(25)

11



and the difference between the front-door estimand and the ATE is the following:

BfdATE = λκ − τ = αβ + αθe V(U|A)
V(M|A)

+ βeδV(U)
V(A)

+ e2δθV(U)
V(A)

V(U|A)
V(M|A)

− αβ + γ

= αθe V(U|A)
V(M|A)

+ βeδV(U)
V(A)

+ e2δθV(U)
V(A)

V(U|A)
V(M|A)

− γ

(26)

B.2 Back-door Estimand

e back-door estimand and bias can be described in terms of the following covariance relation-

ships:

Cov(Y,A) = Cov(βM+ γA+ θU,A)

= βCov(M,A) + γCov(A,A) + θCov(U,A)

= β(αV(A) + eδV(U)) + γV(A) + θCov(U, eU)

= β(αV(A) + eδV(U)) + γV(A) + θδV(U)

(27)

μbd1 − μbd0 =
Cov(Y,A)
V(A)

= αβ + γ + (βeδ + θδ)V(U)
V(A)

BbdATE = (βeδ + θδ)V(U)
V(A)

(28)
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