The package estimates linear models on panel data structures in the presence of AR(1)-type autocorrelation as well as panel heteroskedasticity and/or contemporaneous correlation. First, AR(1)-type autocorrelation is addressed via a two-step Prais-Winsten feasible generalized least squares (FGLS) procedure, where the autocorrelation coefficients may be panel-specific. A number of common estimators for the autocorrelation coefficient are supported. In case of panel heteroskedasticty, one can choose to use a ‘sandwich’-type robust standard error estimator with OLS or a panel weighted least squares estimator after the two-step Prais-Winsten estimator. Alternatively, if panels are both heteroskedastic and contemporaneously correlated, the package supports panel-corrected standard errors (PCSEs) as well as the Parks-Kmenta FGLS estimator.